1 1 0 1 1
0 0 0 0 1 (0) (1) (0
) 1 1 0 1 1
[x*y]补 = 1,00101,11011(直接补码阵列不要求)
带求补器的补码阵列
[x]补 = 0 11011, [y]补 = 1 00001 乘积符号位单独运算0⊕1=1
尾数部分算前求补输出│X│=11011,│y│=11111
1 1 0 1 1 * 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 11 1 1 0 1 1
X×Y=-0.1101000101
(2) 原码阵列
x = -0.11111, y = -0.11011 符号位: x0⊕y0 = 1⊕1 = 0 [x]补 = 11111, [y]补 = 11011
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
[x*y]补 = 0,11010,00101 直接补码阵列
[x]补 = (1)00001, [y]补 = (1)00101 (1) 0 0 0 0 1
12 (1) 0 0 1 0 1
[x*y]补 = 0,11010,00101(直接补码
阵列不要求)
带求补器的补码阵列
[x]补 = 1 00001, [y]补 = 1 00101 乘积符号位单独运算1⊕1=0
尾数部分算前求补输出│X│=11111,│y│=11011 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
13
X×Y=0.1101000101
14
8.(1) 符号位 Sf = 0⊕1 = 1
去掉符号位后:[y’]补 = 00.11111 [-y’]补 = 11.00001 [x’]补 = 00.11000 0 0 1 1 0 0 0 +[-y’]补 1 1 0 0 0 0 1
+[-y’]补 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0.11 ← 0 0 0 0 1 1 0
15