1B??2L?La??B?S?22?BL?E? = ?t2L2aL?ta(2)以加速度a前进L过程,合外力做功
W+W安=maL
所以
W安=maL﹣W
以加速度4a前进L时速度为
v??8aL=2v
合外力做功
WF′+W安′=4maL
B2L2v由FA?BIL?可知,位移相同时:
RFA′=2FA
则前进L过程
W安′=2W安
所以
WF′=4maL﹣2W安=2W+2maL
(3)设金属杆在水平恒力作用下前进d时FA=F,达到最大速度,由几何关系可知,接入电路的杆的有效长度为2d,则
B2?(2d)2vmFA?BIl??F
R0?2d所以
FR0d= 2B2vm由动能定理有
Fd?Q?所以:
12mvm 212F2R012?mvm Q=Fd﹣mvm=22B2vm2(4)根据安培力表达式,假设维持匀速,速度不变而位移增大,安培力增大,则加速度一定会为负值,与匀速运动的假设矛盾,所以做减速运动。
13.如图所示,两根电阻忽略不计、互相平行的光滑金属导轨竖直放置,相距L=1m,在水平虚线间有与导轨所在平面垂直的匀强磁场,磁感应强度B=0.5T,磁场区域的高度d=1m,导体棒a的质量ma=0.2kg、电阻Ra=1Ω;导体棒b的质量mb=0.1kg、电阻
Rb=1.5Ω.它们分别从图中M、N处同时由静止开始在导轨上无摩擦向下滑动,b匀速穿过磁场区域,且当b刚穿出磁场时a正好进入磁场,重力加速度g=10m/s2,不计a、b棒之间的相互作用,导体棒始终与导轨垂直且与导轨接触良好,求:
(1)b棒穿过磁场区域过程中克服安培力所做的功; (2)a棒刚进入磁场时两端的电势差;
(3)保持a棒以进入时的加速度做匀变速运动,对a棒施加的外力随时间的变化关系. 【答案】(1)b棒穿过磁场区域过程中克服安培力所做的功为1J;(2)a棒刚进入磁场时两端的电势差为3.3V;
(3)保持a棒以进入时的加速度做匀变速运动,对a棒施加的外力随时间的变化关系为F=0.45t﹣1.1. 【解析】 【分析】
(1)b在磁场中匀速运动,其安培力等于重力,根据重力做功情况求出b棒克服安培力分别做的功.
(2)b进入磁场做匀速直线运动,受重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律和切割产生感应电动势大小公式,求出b做匀速直线运动的速度大小.a、b都在磁场外运动时,速度总是相等,b棒进入磁场后,a棒继续加速运动而进入磁场,根据运动学速度时间公式求解出a进入磁场时的速度大小,由E=BLv求出a棒产生的感应电动势,即可求得a棒刚进入磁场时两端的电势差.
(3)根据牛顿第二定律求出a棒刚进入磁场时的加速度,再根据牛顿第二定律求出保持a棒以进入时的加速度做匀变速运动时外力与时间的关系式. 【详解】
(1)b棒穿过磁场做匀速运动,安培力等于重力,则有:BI1L=mbg, 克服安培力做功为:W=BI1Ld=mbgd=0.1×10×1=1J
(2)b棒在磁场中匀速运动的速度为v1,重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律得:
=mbg,vb=
=
=10m/s,
=
=0.1s,a、b都在磁场外运动时,速度
b棒在磁场中匀速运动的时间为t1,d=vbt1,t1=
总是相等的,b棒进入磁场后,a棒继续加速t1时间而进入磁场,a棒进入磁场的速度为va,va=vb+gt1=10+10×0.1=11m/s.
电动势为:E=BLva=0.5×1×11=5.5V,a棒两端的电势差即为路端电压为:U=
=
=3.3V.
(3)a棒刚进入磁场时的加速度为a,根据牛顿第二定律得:mag﹣BI2L=maa, a=g﹣
=g﹣
=10﹣
=4.5m/s2,
要保持加速度不变,加外力F,根据牛顿第二定律得:F+mag﹣BIL=maa 得:F=
t=
×t=0.45t﹣1.1.
14.某电子天平原理如图所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C、D与外电路连接,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I可确定重物的质量.已知线圈匝数为n,线圈电阻为R,重力加速度为g.问:
(1)线圈向下运动过程中,线圈中感应电流是从C端还是从D端流出? (2)供电电流I是从C端还是从D端流入?求重物质量与电流的关系; (3)若线圈消耗的最大功率为P,该电子天平能称量的最大质量是多少? 【答案】(1)感应电流从C端流出 (2)m?【解析】 【分析】 【详解】
(1)根据右手定则,线圈向下切割磁感线,电流应从D端流入,从C端流出
(2)根据左手定则可知,若想使弹簧恢复形变,安培力必须向上,根据左手定则可知电流应从D端流入,根据受力平衡mg?nBI?2L① 解得m?2nBLI(3)m0?2nBLggP R2nBLI② g(3)根据最大功率P?I2R得I?②③联立解得:m0?P③ R2nBLP gR
15.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨平面垂直。阻值为R的导体棒垂直于导轨静止放置,且与导轨接触。t=0时,将开关S由1掷到2。用q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度。请定性画出以上各物理量随时间变化的图象(q-t、i-t、v-t、a-t图象)。
【答案】图见解析. 【解析】 【详解】
开关S由1掷到2,电容器放电后会在电路中产生电流。导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动。导体棒切割磁感线,速度增大,感应电动势E=Blv,即增大,则实际电流减小,安培力F=BIL,即减小,加速度a=F/m,即减小。因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速)。由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的,故a-t图像如图:
由于电容器放电产生电流使得导体棒受安培力运动,而导体棒运动产生感应电动势会给电容器充电。当充电和放电达到一种平衡时,导体棒做匀速运动。则v-t图像如图:
;
当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0),故q-t图像如图:
这时电容器的电压等于棒的电动势数值,棒中无电流。I-t图像如图: