17. (2012黄冈)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/ 时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示, 现有以下4 个结论:
①快递车从甲地到乙地的速度为100 千米/时; ②甲、乙两地之间的距离为120 千米;
3③图中点B 的坐标为(3,75);
4④快递车从乙地返回时的速度为90 千米/时. 以上4 个结论中正确的是____________(填序号) ①③④
18.(2012)甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说确的是( )C
A.甲队率先到达终点
B.甲队比乙队多走了200米路程
6
C.乙队比甲队少用分钟
D.比赛中两队从出发到秒时间段,乙队的速度比甲队的速度快
19.(2012)如图,点A、B、C、D为⊙O的四等分点,动点P从圆心O出发,沿OC?CD?DO的路线做匀速运动,设运动的时间为t秒,∠APB的度数为y度,则下列图象中表示y(度)与t(秒)之间函数关系最恰当的是( )
20.(2012)如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为( )B
21.(2012)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是( )B
7
22.(2012)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是( )C
A.甲、乙两地的路程是400千米 B.慢车行驶速度为60千米/小时 C.相遇时快车行驶了150千米 D.快车出发后4小时到达乙地
23.(2011)因长期干旱,甲水库蓄水量降到了正常水位的最低值,为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.
8
求: (1)线段BC的函数表达式;
(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值
24.(2011)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.
s(km)86432O891011121314t(时)
请回答下列问题:(1)求师生何时回到学校
(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返
9
回学校,往返平均速度分别为每小时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km,15km、17km、19km,试通过计算说明哪几个植树点符合要求. 解:(1)设师生返校时的函数解析式为s?kt?b, 把(12,8)、(13,3)代入得,
?8?12k?b,?k??5, 解得: ??3?13k?bb?68??∴s??5t?68 , 当s?0时,t= , ∴师生在时回到学校; (2)由图象得,当三轮车追上师生时,离学校4km;
(3)设符合学校要求的植树点与学校的路程为x(km), 由题意得:
xx7?2??8<14, 解得:x<17,
9108答:A、B、C植树点符合学校的要求.
25.(2012)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.
10