好文档 - 专业文书写作范文服务资料分享网站

中考数学动点问题专题讲解(建立动点问题的函数解析式)

天下 分享 时间: 加入收藏 我要投稿 点赞

学习好资料 欢迎下载

练习1.如图,在△ABC中,BC=8,CA= ,∠C=60°,EF∥BC,点E、F、D分别在AB、AC、BC上(点E与点A、B不重合),连接ED、DF。设EF=x,△EFD的面积为y。 求出y 与x之间的函数表达式,并写出自变量x的取值范围。

2、 【09福州】如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由;

(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;

(3)作QR//BA交AC于点R,连结PR,当t为何值时, △APR∽△PRQ?

3. 【08广东】将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD. (1)填空:如图1,AC= ,BD= ;四边形ABCD是 梯形. (2)请写出图1中所有的相似三角形(不含全等三角形).

(3)如图2,若以AB所在直线为x轴,过点A垂直于AB的直线为y轴建立如图2的平面直角坐标系,保持ΔABD不动,将ΔABC向x轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

学习好资料 欢迎下载

中考数学动点问题专题讲解(建立动点问题的函数解析式)

学习好资料欢迎下载练习1.如图,在△ABC中,BC=8,CA=,∠C=60°,EF∥BC,点E、F、D分别在AB、AC、BC上(点E与点A、B不重合),连接ED、DF。设EF=x,△EFD的面积为y。求出y与x之间的函数表达式,并写出自变量x的取值范围。2、【09福州】如图,已知
推荐度:
点击下载文档文档为doc格式
8webx9h8mx6trx01723y3gzju6vsnw00diq
领取福利

微信扫码领取福利

微信扫码分享