好文档 - 专业文书写作范文服务资料分享网站

金属学与热处理课后习题答案

天下 分享 时间: 加入收藏 我要投稿 点赞

第六章 金属及合金的塑性变形和断裂

6-1 锌单晶体试样截面积A=78.5mm2,经拉伸试验测定的有关数据如下表: 屈服载荷/N 620 252 184 148 174 273 525 φ角(°) 83 72.5 62 48.5 30.5 176 5 λ角(°) 25.5 26 38 46 63 74.8 82.5 τk(Mpa) 0.87 0.87 0.87 0.87 0.89 0.9 0.87 cosλcosφ 0.11 0.27 0.37 0.46 0.4 0.26 0.13 σs(Mpa) 7.90 3.21 2.34 1.89 2.22 3.48 6.69 1)根据以上数据求出临界分切应力τk并填入上表 2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。

答: 1) 需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/

截面积

需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。 2) cosφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子

的增大,屈服应力逐渐减小。cosφcosλ的最大值是φ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。 6-2 画出铜晶体的一个晶胞,在晶胞上指出: 1)发生滑移的一个滑移面

2)在这一晶面上发生滑移的一个方向

3)滑移面上的原子密度与{001}等其他晶面相比有何差别 4)沿滑移方向的原子间距与其他方向有何差别。 答:

解答此题首先要知道铜在室温时的晶体结构是面心立方。 1) 发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。在面心立方

晶格中的密排面是{111}晶面。 2) 发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}

晶面中的密排方向<110>晶向。 3) {111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密

度为1.5/a2 4) 滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,

原子间距小于其他晶向,其值为1.414/a。

6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向施加应

力,使该晶体在所有可能的滑移面上滑移,并在上述晶面上产生相应的滑移线,试预计在表面上可能看到的滑移线形貌。 答:

对受力后的晶体表面进行抛光,在金相显微镜下可以观察到在抛光的表面上出现许多

相互平行的滑移带。在电子显微镜下,每条滑移带是由一组相互平行的滑移线组成,这些滑移线实际上是晶体中位错滑移至晶体表面产生的一个个小台阶,其高度约为1000个原子间距。相临近的一组小台阶在宏观上反映的就是一个大台阶,即滑移带。 所以晶体表面上的滑移线形貌是台阶高度约为1000个原子间距的一个个小台阶。 6-4 试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因? 答:

多晶体的塑性变形过程:

1、多晶体中由于各晶粒的位向不同,则各滑移系的取向也不同,因此在外加拉伸力的作用下,各滑移系上的分切应力也不相同。由此可见,多晶体中各个晶粒并不是同时发生塑性变形,只有那些取向最有利的晶粒随着外力的增加最先发生塑性变形。 2、晶粒发生塑性变形就意味着滑移面上的位错源已开启,位错将会源源不断地沿着滑移面上的滑移方向运动。但是,由于相邻晶粒的位向不同,滑移系的取向也不同,因此运动着的位错不能够越过晶界,滑移不能发展到相邻晶粒中,于是位错在晶界处受阻,形成位错的平面塞积群。

3、位错平面塞积群在其前沿附近造成很大的应力集中,这一集中应力与不断增加的外加载荷相叠加,使相邻晶粒某些滑移系上的分切应力达到临界值,于是位错源开动,开始塑性变形。

4、为了协调已发生变形的晶粒形状的改变,要求相邻晶粒必须进行多系滑移,这样就会使越来越多的晶粒参与塑性变形。

5、在多晶体的塑性变形中,由外加载荷直接引起塑性变形的晶粒只占少数,不产生明显的宏观效果,多数晶粒的塑性变形是由已塑性变形的晶粒中位错平面塞积群所造成的应力集中所引起,并造成一定的宏观塑性变形效果。

6、多晶体的塑性变形具有不均匀性。由于各晶粒间以及晶粒内和晶界位向不同的影响,各个晶粒间及晶粒内的变形都是不均匀的。 晶粒越细强度越高、塑性越好的原因:

强度:由多晶体的塑性变形过程可知,多数晶粒的塑性变形是由先塑性变形晶粒中的位错平面塞积群引起的应力集中于外加载荷相叠加而引起的。由位错运动理论可以得知,位错塞积群在障碍处产生的应力集中与位错数目有关,位错数目越多,造成的应力集中越大,而位错数目与位错源到障碍物的距离成正比。所以晶粒越小,位错源到障碍物(晶界)的距离越短,位错数目越少,造成的应力集中越小,此时如果要是相邻晶粒发生塑性变形,则需要较大的外加载荷,也就是抵抗塑性变形的能力月强,强度越高。

塑性:由多晶体的塑性变形过程可知,多晶体的塑性变形具有不均匀性。晶粒越细,各晶粒间或晶粒内部与晶界处的应变相差越小,变形较均匀,相对来说因不均匀变形产生应力集中引起开裂的机率较小,这就有可能在断裂前承受较大的塑性变形量,可以得到较高的伸长率和断面收缩率。

韧性:由于细晶粒的变形较均匀,不易产生应力集中裂纹,而且晶粒越细晶界面积越大,对裂纹扩展的阻力越大,因此在断裂过程中可以吸收更多的能量,表现出较高的韧性。

6-5 口杯采用低碳钢板冷冲而成,如果钢板的晶粒大小很不均匀,那么冲压后常常发

现口杯底部出现裂纹,这是为什么? 答:

裂纹原因:

1、低碳钢板冷冲时,各部分的塑性变形是不均匀的,在口杯局内在宏观内应力。

2、由于多晶体晶粒变形的不均匀性,加上原始晶粒大小不一,则更加促进了变形的不均匀性,由此产生较大的第二类内应力。

3、所以,冲压后口杯底部出现裂纹的原因是由钢板不均匀变形产生的宏观内应力和晶粒变形不均匀造成的内应力相叠加,超过了钢板的断裂强度,出现裂纹。 6-6 滑移与孪生有何区别,试比较它们在塑性变形过程中的作用。 答:

滑移定义:晶体在切应力作用下,晶体的一部分相对于另一部分沿某些晶面(滑移面)和晶向(滑移方向)发生滑动的现象。本质:滑移并不是晶体的一部分相对于另一部分作整体的刚性移动,而是位错在切应力的作用下沿着滑移面上的滑移方向逐步移动的结果。

孪生定义:晶体在切应力作用下,晶体的一部分沿一定的晶面(孪生面)和一定的晶向(孪生方向)相对于另一部分晶体做均匀地切变;在切变区域内,与孪生面平行的的每层原子的切变量与它距离孪生面的距离成正比,而且不是原子间距的整数倍,这种切变不会改变晶体的点阵类型,但可使变形部分晶体的位向发生变化,并与未变形部分的晶体以孪晶界为分界面构成镜面对称的位向关系。通常把对称的两部分晶体称为孪晶,而将形成孪晶的过程称为孪生。 滑移在塑性变形过程中的作用:

在常温和低温下金属的塑性变形主要通过滑移方式进行。

1、晶体中滑移系越多,则可供滑移采用的空间位向越多,塑性变形越容易进行。当沿滑移面上滑移方向的分切应力达到临界分切应力时,滑移就可进行,而且位错只需一个很小的切应力就可以实现运动。

2、在晶体发生滑移的同时,滑移面和滑移方向会发生转动,造成滑移系取向的变化,有可能使其他滑移系的分切应力达到临界值,产生多滑移现象,促进晶体的塑性变形。

孪生在塑性变形过程中的作用: 孪生对塑性变形的贡献比滑移要小。

1、孪生的临界分切应力要比滑移的临界分切应力大得多,只有在滑移很难进行的条件下,晶体才进行孪生变形。

2、但是,由于孪生后变形部分的晶体位向发生改变,可能会使原来处于不利取向的滑移系转变为新的有利取向,这样可以激发晶体的进一步塑性变形。所以当金属中存在大量孪晶时,可以促进塑性变形。

6-7 试述金属经塑性变形后组织结构与性能之间的关系,阐明加工硬化在机械零构件

生产和服役过程中的重要意义。 答:

金属塑性变形后组织结构与性能之间的关系:

1、金属塑性变形后,晶粒形状发生变化,沿变形方向伸长,当变形量很大时出现纤维组织,使金属的力学性能呈方向性。 2、金属塑性变形后,晶体中的亚结构得到细化,形成大量的胞状亚结构。位错密度增加,位错相互交割出现位错割阶和位错缠结现象,产生加工硬化,硬度、强度增加,塑性、韧性降低。

3、金属塑性变形后,当变形量很大时,多晶体中原为任意取向的各个晶粒逐渐调整其取向而趋于彼此一致,产生形变织构。金属性能表现为各向异性。

4、金属塑性变形后,晶体缺陷增加,产生大量的空位。空位增加,电阻率增大,导电性能和导热性能略为下降。内能增加,化学性提高,耐腐蚀性能降低。

金属学与热处理课后习题答案

第六章金属及合金的塑性变形和断裂6-1锌单晶体试样截面积A=78.5mm2,经拉伸试验测定的有关数据如下表:屈服载荷/N620252184148174273525φ角(°)8372.56248.530.51765λ角(°)25.52638466374.882.5τk(Mpa)0.870.870.870.870.8
推荐度:
点击下载文档文档为doc格式
8vxvf8dzpc7g2499ip734mu7526k9200fqz
领取福利

微信扫码领取福利

微信扫码分享