广播电视卫星传输技术
一、卫星通信的优势
利用卫星传输广播电视节目是卫星应用技术的重大发展,卫星通信同现在常用的电缆通信、微波通信等相比,有较多的优点,具体表现在以下几个方面: ●卫星通信的传播距离远。
同步通信卫星可以覆盖最大跨度达一万八千公里的区域。在这个覆盖区的任意两点都可通过卫星进行通信,而微波通信一般是50公里左右设一个中继站,一颗同步通信卫星的覆盖距离相当于300多个微波中继站。
●卫星通信路数多、容量大。一颗现代通信卫星,可携带几十个转发器,可提供几十路电视和成千上万路电话。
●卫星通信质量好、可靠性高。卫星通信的传输环节少,不受地理条件和气象的影响,可获得高质量的通信信号。
●卫星通信运用灵活、适应性强。它不仅能实现陆上任意两点间的通信,而且能实现船与船、船与岸上、空中与陆地之间的通信,它可以组成一个多方向、多点的立体通信网。
●成本低。在同样容量、同样距离的条件下,卫星通信和其他通信设备相比,耗费的资金少,卫星通信系统的造价并不随通信距离的增加而提高,随着设计和工艺的成熟,成本还在不断降低。 二、卫星电视广播系统组成
卫星电视广播系统主要由四部分组成:上行发射站、星载转发器、测控站、地球接收站。上行发射站把节目制作中心送来的信号(可以是数字电视信号、数字广播、视频、音频、中频信号等)加以处理,经过调制,上变频和高功率放大,通过定向天线向卫星发射上行C、Ku波段信号;同时也接收由卫星下行转发的微弱的微波信号,监测卫星转播节目的质量。星载转发器用于接收地面上行站送来的上行微波信号(C波段为6GHz,Ku波段为14GHz),并将它放大、变频、再放大后,发射到地面服务区内。因此,星载转发器实际上是起一个空间中继站的作用,它应以最低附加噪声和失真传送电视广播信号。地面接收站接收来自卫星的信号,经过低噪声放大,下变频为中频信号、中频信号经过调频、解调后得到基带信号,分别送到视频恢复电路和伴音解调电路,重新得到正常的视频信号和伴音信号,直接送到电视监视器或电视机,重现彩色图像和重放伴音,也可以重新调制到电视频道上传送给用户。 三、广播电视卫星传输技术原理 (一)上行发射站 首先,经过视频处理电路处理后的视频信号与经过伴音处理电路处理的伴音信号相加混合成基带信号,然后对中频载波进行调制,将输入的基带信号变为70MHz的中频调谐波。中频信号再经过上变频,变为指定的发射频率后,送到高频功率放大器进行放大,再由发射天线发射给卫星。上行发射站可向卫星传送一路或多路信号,通常采用主瓣波束较窄的大口径发射天线发射,以提高上行站的抗干扰能力。 1.视频信号处理过程 ①预加重技术
调制信号在接收端解调时,白噪声电平随频率的升高呈线性增长,这种变化规律称为调制波的三角噪声特性,它使图像信号的高频成分容易受到噪声的影响。为了提高图像信号高频端的信噪比,改善三角噪声特性,减少传输信号的微分增益和微分相位失真,在视频信道中对图像信号进行预加重处理。所谓预加重就是在发送端将图像信号先送入预加重网络,由于预加重网络具有高端增益高、低端增益低的特性,使得图像信号的高频成分得到增强。 ②能量扩散技术
在带有行、场同步信号的视频信号中,大多数时间里信号电平都处于黑白电平上;而中间电平的时间较短。用这种视频信号对载波进行频率调制,就会造成频谱能量在两侧过于集中,分布不均匀,致使与它共用频段的某些地面通信受到较大干扰。为了减少这种干扰,在发射功率受到限制的同时,也应对信号频谱能量加以扩散。为此,人为将一个频率大约为30Hz的三角波加入基带信号中,组成复合信号。用此复合信号对载波进行调频,便可使信号频谱能量扩散,使其均匀分布。
2.伴音信号处理过程
①伴音信号的模拟传输方式
模拟传输方式首先将伴音信号中高于视频信号的上限频率的伴音副载波进行频率调制,然后与经过预加重和能量扩散处理的图像信号,按照频分复用的方式进行相加混合成基带信号,再对中频载波进行调频。伴音信号的模拟传输采用FM-FM(两次调频)的传输方式。
②伴音信号的数字传输方式
数字传输过程首先将伴音信号进行模/数转换,即将伴音信号经过取样、量化、编码的一系列过程,将模拟的声音信号变为数字码流,并将多路数字化后的伴音信号按时分复用方式合成为一路数字信号,然后经过信号压缩、前向纠错编码及加扰码等一系列处理后,再对高于图像最高频率的伴音副载波进行相位调制。如此得到的伴音调制信号再与经过处理的图像信号合成为基带信号,最后一起对中频载波进行调制。
(二)星载转发器
在电视广播卫星上有C、Ku波段转发系统,它接收来自上行发射站的信号,并且向卫星电视广播地面接收站转发下行信号,实质上是一个安装在赤道上空的中继站,其工作原理与地面差转机类似。它由收、发天线、转发器和电源组成。转发器又由高灵敏度的宽带低噪声放大器、变频器、C、Ku波段功率放大器等组成,是决定卫星电视广播质量的关键。
星载转发器在电路结构上一般有两种方式:一是直接变频式,它将上行的微波频率经过一次变频,变为下行微波频率。
另一种为二次变频式,它将上行的微波频率变化为中频,经放大后再变频为下行频率。直接变频式电路简单,但由于工作频率高,因而对元器件要求高。二次变频式电路工作于中频,对元器件要求不高,容易实现高增益和AGC控制。
(三)地面接收站
卫星电视接收站由天馈部分、高频头、卫星接收机等部分组成。天线接收来自卫星的信号,通过高频头将微弱的电磁波信号进行低噪声放大,并将它变换为频率为950~1450MHz的第一中频信号。中频信号经过电缆送到卫星接收机进行解调。选台器从950~1450MHz的输入信号中选出所要接收的某一电视频道的频率,并将它变换为固定的第二中频频率(通常为479.5MHz),经中频放大和解调后得到包含视频和伴音信号在内的复合基带信号。视频信号送到视频恢复电路先经过去加重处理。所谓的去加重处理,实际上是让视频信号通过一个频率响应特性与预加重频响特性相反的无源二端口网络,从而抵消预加重网络对信号产生的频谱畸变,恢复原本信号。由于在发射端对信号进行了能量扩散处理,即在视频信号中加入了30Hz的三角波扩散信号。因此必须在接收端进行能量去扩散处理,去除叠加在视频信号上的三角波信号,恢复视频信号的原来特性,得到正常的视频信号。伴音信号送到伴音解调器经过放大、副载波解调,去加重后得到正常的伴音信号。
四、我国卫星广播电视现状与发展方向
我国卫星广播电视的现状是:模拟电视与数字电视节目并存;C波段卫星电视与Ku波段卫星电视并存;数字加密电视与数字非加密电视并存。
今后应尽快建立广播卫星频段的大功率直播卫星系统(DBS)。Ku波段DBS的发展主要体现在以下三个方面:
1.采用更大功率容量的Ku波段卫星开展直播卫星/直播到户(DBS/DTH)业务。使广大用户使用0.4m甚至更小口径的接收天线,即可收到数十套至上百套丰富多彩的广播电视节目。
2.试播HDTV。将高清晰度电视节目通过直播卫星向全国发送,在大、中城市和有条件接收的地方,可用小型卫星接收天线进行高清晰度电视的集体和个人接收。
3.依靠卫星网络进行多功能开发利用,并与地面有线网络结合开拓多媒体市场,建立综合信息服务平台,开展新闻采集(SNG)和数据广播等业务。逐步向用户提供视频点播(VOD)、互联网接入、家中银行、实时信息发布、远程诊疗、远距离教学、电视会议、电视购物等多种服务。
第2节影响广播电视卫星安全传输的主要问题及基本应对
由上节介绍可见,广播电视的卫星传输系统是一个开放的无线远程点对面传输模式,上行站的工
作状态、地面到卫星的空间环境状态、卫星的工作状态及地面单收站的工作状态均直接影响到广播电视节目卫星传输的效果;其中上行站、上行站到卫星的空间环境及卫星的状态异常对广播电视的节目传输产生的是面的影响,应给予更多的重视。
1.上行站影响卫星传输的主要因素及克服办法 上行站的异常产生的是一个面的影响,因此上行站的安全播出是广播电视卫星传输的基本保障之一。影响上行站安全播出的主要因素有:
(1)人为失误
包括操作失误、责任心不到位,未及时发现异态并采取挽救措施、业务不过硬造成的处理不当或处理不及时、维护检修不到位造成的设备故障。人为失误是可以杜绝的,办法是完善的管理制度、全面细致的故障预案、令行禁止的工作作风和一丝不苟的工作责任心。 尤其是面对当前法轮功的疯狂干扰,卫星传输的安全播出工作必须做实做细。处理突发事件 的原则是有效抵御干扰,减少影响、缩短停播。围绕这一原则找出解决问题的关键:
重在衔接:在处理突发事件时,主备设备之间、主备系统之间、部门之间的无缝衔接,是减少影响的关键。衔接程序要科学严谨,衔接手段要完善,衔接责任要明确,要求要高,管理要严格,考核要精确,对接才能准确无误,达到尽可能减少影响,缩短停劣播的目的。
重在反应:在处理突发事件时,反应迅速、处理果断,是避免重大事故的关键。反应快是建立在责任心强的基础上,值班三心二意往往不能及时发现问题。处理果断是建立在业务功底强的基础上,业务不熟练,技术不过硬往往延误处理时间。因此,一线值班员的政治素质和业务素质在很大程度上决定了停播时间和影响大小。
重在方法:在处理突发事件时,清晰的处理程序,简洁的操作步骤,简练的口令是争取时间的关键。在日常工作中就要按照尽可能减少影响,缩短停播的原则,善于总结,善于积累,通过每一次停播事故改进维护流程,制定准确、简明、有效、实用的应急处理预案和操作卡片,通过科学的方法达到有效抵御干扰,减少影响,缩短停播的目的。
(2)设备故障
单机设备故障是不可避免的,但可以通过系统备份策略、快速故障维护来避免或缩短因其造成的传输中断或传输质量下降。
上行站作为点对面的卫星传输的一个核心环节,为保证传输的不间断和高质量,需要有必要的系统在线冗余配置,故障情况下上行设备的主备切换是及时恢复或避免传输异常的有效手段。
设备故障的快速恢复主要靠平时严格深入的业务培训和各种故障演练等措施提高维护人员的业务素质,从而快速恢复设备或系统故障达到目标。
(3)电磁干扰
主要靠电磁检测、频率协调以及电磁屏蔽手段解决问题。
常见的电磁干扰为中波干扰、短波干扰、手机机站干扰、雷达干扰、电焊机产生的电磁干扰、微波干扰等。中波干扰主要影响地球站的基带处理系统和电源系统,主要的克服措施是良好的系统或机房屏蔽及屏蔽接地;短波干扰主要影响高速数字基带系统和L波段窄带传输线路,对于采用L波段ODU的地球站,由于该种设备一般需要由室内单元馈送一个L波段的本振信号,单频本振信号往往由于受短波干扰而给整个上行系统引入强大噪声,严重影响系统信噪比指标,比较有效的措施是机房屏蔽和馈线屏蔽,或采用半钢(铜皮屏蔽)电缆;雷达干扰多表现为对卫星C波段下行信号(4GHz)的干扰,由于此类干扰信号直接由接收天线引入卫星传输系统,地球站或卫星单收站一般无法克服,只能通过国家无委的频率协调解决,如果地球站或卫星单收站离干扰较远且有一定夹角也可通过适当加大接收天线口径解决;电焊机工作时会产生高频电磁弧,较近时会对卫星接收L波段的信号产生干扰,正常传输时一般应避免电焊机在卫星接收区近距离工作;c波段卫星信号很可能受到地面微波信号的干扰,但现实中由于国家无委一般对上行站和微波信道有较好的规划,所以这种情况较少发生。
(4)必要的值班辅助设施不完善
尤其是对于担负多卫星传输任务的地球站,面对当前严峻的卫星播出形式,仅靠传统的人眼看、人耳听的手段发现异态、判断异态、处理异态是远远不够的,这些传统的手段不能保证所有异态的及时
发现,不能保证每个具体处理人员主观综合判断的正确性,不能保证每次处理的最恰当性。面对以上问题,一个有效的办法就是让对监视信号的主观评价客观化,让对一般异态的经验判断通过多点检测和科学的综合判断方法自动化,让对设备或系统的人为手动操作自动化,尽量减少安全播出对人的依赖。
2.空间环境对卫星传输的影响及改善措施 卫星通信是一个开放的通信系统,因此通信链路易受外部条件影响。影响广播电视卫星传输的因素很多,如通信信号间的干扰,太空天气对卫星传输空间链路的影响等。以下通过对几种常见现象的深入分析,以加强对卫星传输安全漏洞的判断和预防。
(1)天空天气对卫星传输的影响
太空天气对卫星传输的影响包括:对卫星的影响、对信号传播环境的影响和对地面站的影响,主要表现在以下几个方面:
①由太阳放射的高能量粒子可能造成高轨道卫星(如同步卫星)存储器发生混乱、绝缘材料充电及因绝缘材料被击穿突发放电造成的元器件损坏;
②太阳活动的加强会加速低轨道卫星的轨道衰落、降低卫星寿命; ③太阳噪声直接影响卫星下行链路的信噪比;
④信号穿过电离层或对流层时,会因被吸收、电离层闪烁、法拉第极化旋转等降级,即使接收站的输入信噪比下降。
(2)太阳活动对广播卫星的影响
广播卫星为同步卫星,属高轨道卫星,距离太阳最近,受太阳辐射的直接影响最大。太阳辐射包括电磁辐射和粒子辐射,情形复杂,其离子化辐射包括低量级紫外线、x射线及太阳风,通常情况下对同步卫星不会造成影响。但在太阳风暴爆发期,紫外线及x射线流会突然增大几个量级,辐射能量也会增强,同时还会伴随着大量电子和质子,少数情况下有些粒子会积累很高的能量。这些高能量的太阳能粒子往往就成为了卫星太空仓的杀手。
来自太阳的带电粒子会在卫星表面积累起来,在一些曲面上,或几个特殊的绝缘面之间充电,产生所谓的太空仓充电现象。当充电电压足够大时,卫星上的某些绝缘材料会被击穿,产生绝缘层放电,使某些PCB电路、电子器件被损坏。此外,如果在卫星仓计算机存储单元附近出现高电量的粒子,就有可能改变存储单元的状态,如由0变为1,这可能会导致系统控制程序或数据出错,触发卫星仓控制电路,产生伪指令。一般情形下,这些伪指令不会有什么大的影响,但偶尔也会触发使太空仓飘离地球等重大事故,几年前加拿大的Anik卫星正是因此丢失的。
在国内就曾出现过由于电离子累积产生了伪指令,导致卫星转发器自保护关机的事例。 此外,地球磁层可以控制太空粒子的运动,因此对处于其中的卫星通常有一定程度的屏蔽和保护作用。但对同步卫星,当太阳风及太阳系内的磁场条件足以将地球磁层靠近太阳一侧的边缘压缩到同步卫星轨道时(在太阳大爆发造成地球电离层磁暴时很可能发生),同步卫星一旦处于地球和太阳之间,就会完全暴露在太阳粒子辐射的巨大作用力之下。对于一些较早的靠地球磁场维持正确轨道的卫星来说,除了要遭受来自太阳的高能粒子流的危害之外,同时还会因此失去它们的轨道参考,这无疑是危险的。在太阳活动峰年,随着辐射加剧,这种潜在的危险会随之增大。 (3)电离层对卫星传输信号的影响
电离层中充满了电子,相当于一个等离子导体,当电磁信号在其中传播时会产生相互作用。当信号频率在某个特定频率之下时,会在电离层处被反射;当信号频率在这个特定频率之上时,信号将穿过电离层,但同时会受到电离层的折射,从而改变传播方向,信号频率越高,传播路径因电离层折射而弯曲的程度越小。卫星通信的信号传播方式属于后者。但电离层并不是一个均匀的等离子层,其密度随每日不同时刻、高度、纬度、季节及太阳活动情况而改变,同时电离层还是一个色散媒体,并处于地球磁场中。这些特性决定了电磁信号在电离层中传播时必然会受到各种各样的影响。
对于卫星通信波段的信号而言,电离层的影响主要表现为折射、散射、闪烁及法拉第旋转效应。雷达跟踪目标对电离层折射非常敏感,但如果电离层相对均匀,折射对于卫星通信却影响不大。电离层色散效应会引起信号延时,对宽带通信还会产生差分延时,这对于宽带的卫星电视信号影响相对较大。以上效应正常情形下,对卫星通信不产生明显影响,但在剧烈太阳活动中,紫外线和x射线倍增,使电离
层离子化程度加剧,不均匀性增强,地球磁场也因此有所改变,所以也需加以注意。
卫星通信信号穿过电离层时,信号极化同时会受到偏转,即发生法拉第极化旋转效应,对接收系统而言,这不仅减小了正极化接收信号的强度,同时增大了反极化干扰。对于一个极化隔离度在35dB以上的接收系统,如果法拉第效应将下行信号极化旋转5度,则极化隔离度会降到约20dB。法拉第极化旋转量正比于磁场强度和电离层总离子数,反比于信号频率的平方根,因此对低频信号影响相对较大,对低仰角传播的信号由于传播路径长,影响相对较大。在剧烈太阳活动中,VHF波段信号的极化可被旋转多周,而C波段(4GHz)信号的极化旋转最多在几度之内。
图2—3—5示意了在剧烈太阳活动中电离层中总电子数在一天之内的典型的变化情况及一个C波段卫星电视下行信号的相应的法拉第旋转情况和接收反极化信号的情况。
由于电离层不均匀,信号在电离层中传播时,其强度会随电离层密度的不规则变化产生快速波动,即形成所谓的电离层闪烁现象。电离层闪烁会给通信信号叠加一个低频分量的噪声,越靠近两极,电离层的不规则变化越强。在两极,电离层闪烁随时出现,但夜间更强一些;.在靠近赤道区域,电离层闪烁一般在晚间出现在午夜时消失,很少数情况下才会持续到清晨。当太阳紫外线、X射线增多时,离子化加强,电离层增厚,则电离层闪烁现象加剧,有时造成信号严重衰减。因此电离层闪烁强度也随着太阳活动变化。此外,由于太阳表面辐射不均匀,因此电离层闪
图2—3—5电离层电子数及法拉第效应24小时变化规律烁强度一般又随着太阳的旋转,以27天为一个周期变化。
电离层闪烁对信号的强度和相位均会产生影响。事实上,信号强度的波动并不是由于电离层的不规则吸收引起的,而是由于信号不同成分的相位变化不同,从而使合成信号的强度产生波动引起的。
同步卫星通信主要考虑地磁赤道附近区域(地磁赤道南北20度范围内)的闪烁,同步卫星通信信号在地磁纬度15~20度区域内穿过电离层时,电离层闪烁现象最强。地磁赤道与地理赤道稍有差异,如图2—3—6所示。从1995年我国广播电视卫星传输的数据统计也可以看出,北方地区受电离层闪烁影响不明显,但南方地区的广播电视卫星传输却受到相对较明显的影响。
图2—3—6地磁赤道示意图
此外,通信频率越低,电离层闪烁现象越严重。军用vⅢ’波段影响最重,L波段次之,只有最强的闪烁(发生在剧烈太阳活动中)才会对C波段及其以上波段造成影响。
(4)对流层对卫星信号传播的影响
对流层对卫星通信链路的影响主要表现为吸收衰减,对流层中的水蒸气对2GHz以上的信号损伤较大,且随频率增加而影响加剧。Ku波段(10~20GHz)除了对水蒸气吸收敏感外,对对流层中的尘埃也较为敏感。频率在20GHz以上的信号除了以上因素外,还会出现谐振吸收,如某些频率的信号会同空气中的氧分子产生谐振,其能量会因此被吸收。
对流层对卫星传输最常见和最重要的影响是雨雪衰,以下对此做详细分析介绍。 ①雨衰成因及一般规律
当电磁信号穿过对流层时,其能量会因雨、雪、云、雾的吸收或散射而受到衰耗,衰耗的程度因信号频率、雨雪的大小及信号穿过雨雪区的路程长短而不同。图2—3—7给出了衰耗量与信号频率及雨、云、雾量的一般关系。
(图) 频率(GHz) 实线…雨引起的衰减 A:0.25mm/h(细雨) B:lmm/h(小雨) C:4mm/h(中雨) D:16mm/h(大雨) E:100mm/h(暴雨)
虚线…一云雾引起的衰减
F:0.032g/m。(可见度约600m) G:0.32g/m。(可见度约120m)