2020年全国高考(Ⅰ卷)
文科数学
1.已知合集 A、2.若
B、,则
,
,则
C、()
D、2
() D、
A、0 B、1 C、
3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()
A、
B、
C、
D、
4. 设O为正方形ABCD的中心,在O, A ,B, C, D中任取3点,则取到的3点共线的概率为()
A、 B、 C、 D、
5. 某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()
A、
C、6. 已知圆为()
A、1 B、2 C、3 D、4 7. 设函数
在
的图像大致如下图,则
B、 D、
,过点(1,2)的直线被该圆所截得的弦的长度的最小值
的最小正周期为()
A、
B、
?a
C、
D、
8. 设alog34?2,则4A.
1 16? ( )
1C. 8D.
161B. 99.执行下面的程序框图,则输出的n? ( )
A.17 B.19 C.21 D.23
10.设{an}是等比数列,且a1?a2?a3?1,a2?a3+a4?2,则a6?a7?a8?( ) A.12
B.24
2C.30 D.32
为坐标原点,点
Py211.设F1,F2是双曲线C:x??1的两个焦点,O3在
C上且|OP|?2,
则△PF1F2的面积为( ) A.2
7B.3
OC.2
5D.2
O1为ABC的外接圆,若O1的面积为4π,
12.已知A,B,C为球的球面上的三个点,
AB?BC?AC?OO1,则球O的表面积为( )
C.36π
D.32π
A.64π 二、填空题
B.48π
?2x?y?2?0,13.若x,y满足约束条件??x?y?1?0,则z?x?7y的最大值为____________.
?y?1?0,?14.设向量a?(1,?1),b?(m?1,2m?4),若a?b,则m?____________.
15.曲线y?lnx?x?1的一条切线的斜率为2,则该切线的方程为______________. 16.数列{an}满足an?2?(?1)nan?3n?1,前16项和为540,则a1?_____________. 三、解答题
17.(12分) 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为
A,B,C,D四个等级.加工业务约定:对于A级品、
DB级品、
C级品,厂家每件分别
收取加工费90元,50元,20元;对于级品,厂家每件要赔偿原料损失费50
元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表 等级 频数 A B C D 40 20 20 20 乙分厂产品等级的频数分布表 等级 频数 A B C D 28 17 34 21 A(1)分别估计甲、乙两分厂加工出来的一件产品为级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
18. (12分)?ABC的内角A,B,C的对边分别为a,b,c.已知B?150?. (1)若a?3c,b?27,求?ABC3sinC?22的面积; .
(2)若sinA?
,求
C19. (12分) 如图,正三角形,
PD为圆锥的顶点,
O是圆锥底面的圆心,ABC是底面的内接
为DO上一点,?APC?90?.
(1)证明:平面PAB?平面PAC; (2)设DO?
20. (12分)已知函数f(x)?ex?a(x?2). (1)当a?1时,讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 21. (12
x2分) 已知A,B分别为椭圆E:2?y2?1?a?1?的左、右顶点,Ga2,圆锥的侧面积为3π,求三棱锥P?ABC的体积.
为
E的上顶点,
EAG?GB?8,P为直线x?6上的动点,PA与
E的另一交点为
C,PB与的另一交
点为(1)求
DE. 的方程;
(2)证明:直线CD过定点.