好文档 - 专业文书写作范文服务资料分享网站

高中数学解题思想方法全部内容

天下 分享 时间: 加入收藏 我要投稿 点赞

31

a22??2a22222BE?BD1?cos?在△DEB中,由余弦定理有:cosα===-cos2β。 222BEa2?1?cos2?所以cosα=-cos2β。

【注】 设参数a而不求参数a,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数辅助解决有关问题。

Ⅲ、巩固性题组:

1. 已知复数z满足|z|≤1,则复数z+2i在复平面上表示的点的轨迹是________________。

2. 函数y=x+2+1?4x?x2的值域是________________。

3. 抛物线y=x2-10xcosθ+25+3sinθ-25sin2θ与x轴两个交点距离的最大值为_____

A. 5 B. 10 C. 23 D. 3

4. 过点M(0,1)作直线L,使它与两已知直线L1:x-3y+10=0及L2:2x+y-8=0所截得的线段被点P平分,求直线L方程。 5. 求半径为R的球的内接圆锥的最大体积。

6. f(x)=(1-acosx)sinx,x∈[0,2π),求使f(x)≤1的实数a的取值范围。

22232

222a=0有模为1的虚根,求7. 若关于x的方程2x+xlg(a?31)+lg(a?1)+lg28a2aa?1实数a的值及方程的根。

8. 给定的抛物线y2=2px (p>0),证明:在x轴的正向上一定存在一点M,使得对于抛物线的任意一条过点M的弦PQ,有

31

1+1为定值。 |MP|2|MQ|2 32

七、反证法

与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。

反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。

反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是:

第一步,反设:作出与求证结论相反的假设;

第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。

在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。

在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。

Ⅰ、再现性题组:

1. 已知函数f(x)在其定义域内是减函数,则方程f(x)=0 ______。 A.至多一个实根 B.至少一个实根 C.一个实根 D.无实根

2. 已知a<0,-1

A. a>ab> ab B. ab>ab>a C. ab>a> ab D. ab> ab>a 3. 已知α∩β=l,a α,b β,若a、b为异面直线,则_____。 A. a、b都与l相交 B. a、b中至少一条与l相交 C. a、b中至多有一条与l相交 D. a、b都与l相交 4. 四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____。(97年全国理)

A. 150种 B. 147种 C. 144种 D. 141种

【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个与特例矛盾,选A;

32

22222 33

2小题:采用“特殊值法”,取a=-1、b=-0.5,选D; 3小题:从逐一假设选择项成立着手分析,选B;

4小题:分析清楚结论的几种情况,列式是:C10-C6×4-3-6,选D。

Ⅱ、示范性题组:

例1. 如图,设SA、SB是圆锥SO的两条母线,O是底面 S 圆心,C是SB上一点。求证:AC与平面SOB不垂直。

【分析】结论是“不垂直”,呈“否定性”,考虑使用反 C 证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”。

【证明】 假设AC⊥平面SOB, A O ∵ 直线SO在平面SOB内, ∴ AC⊥SO, B ∵ SO⊥底面圆O, ∴ SO⊥AB,

∴ SO⊥平面SAB, ∴平面SAB∥底面圆O, 这显然出现矛盾,所以假设不成立。 即AC与平面SOB不垂直。

【注】否定性的问题常用反证法。例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。

例2. 若下列方程:x2+4ax-4a+3=0, x2+(a-1)x+a2=0, x2+2ax-2a=0至少有一个方程有实根。试求实数a的取值范围。

【分析】 三个方程至少有一个方程有实根的反面情况仅有一种:三个方程均没有实根。先求出反面情况时a的范围,再所得范围的补集就是正面情况的答案。

【解】 设三个方程均无实根,则有:

441?3??a??22?△1?16a2?4(?4a?3)?0??31?22,解得,即-

3时,三个方程至少有一个方程有实根。 2【注】“至少”、“至多”问题经常从反面考虑,有可能使情况变得简单。本题还用到了“判别式法”、“补集法”(全集R),也可以从正面直接求解,即分别求出三个方程有实根时(△≥0)a的取值范围,再将三个范围并起来,即求集合的并集。两种解法,要求对不等式解集的交、并、补概念和运算理解透彻。

1x?1例3. 给定实数a,a≠0且a≠1,设函数y= (其中x∈R且x≠),证明:①.

ax?1a经过这个函数图像上任意两个不同点的直线不平行于x轴; ②.这个函数的图像关于直线y

=x成轴对称图像。(88年全国理)。

【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设。 【证明】 ① 设M1(x1,y1)、M2(x2,y2)是函数图像上任意两个不同的点,则x1≠x2,

33

34

假设直线M1M2平行于x轴,则必有y1=y2,即=x1-x2

x1?1x2?1=,整理得a(x1-x2)

ax1?1ax2?1∵x1≠x2 ∴ a=1, 这与已知“a≠1”矛盾, 因此假设不对,即直线M1M2不平行于x轴。

y?1x?1得axy-y=x-1,即(ay-1)x=y-1,所以x=,

ay?1ax?1x?1x?1即原函数y=的反函数为y=,图像一致。

ax?1ax?1x?1由互为反函数的两个图像关于直线y=x对称可以得到,函数y=的图像关于直线

ax?1② 由y=

y=x成轴对称图像。

【注】对于“不平行”的否定性结论使用反证法,在假设“平行”的情况下,容易得到一些性质,经过正确无误的推理,导出与已知a≠1互相矛盾。第②问中,对称问题使用反函数对称性进行研究,方法比较巧妙,要求对反函数求法和性质运用熟练。

Ⅲ、巩固性题组:

1. 已知f(x)=x,求证:当x1≠x2时,f(x1)≠f(x2)。

1?|x|2. 已知非零实数a、b、c成等差数列,a≠c,求证:1、1、1不可能成等差数列。

abc3. 已知f(x)=x2+px+q,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于1 。

24. 求证:抛物线y=x-1上不存在关于直线x+y=0对称的两点。

225. 已知a、b∈R,且|a|+|b|<1,求证:方程x+ax+b=0的两个根的绝对值均小于1。

A 6. 两个互相垂直的正方形如图所示,M、N在相

应对角线上,且有EM=CN,求证:MN不可能

垂直CF。

F D B M

N E C

2

34

35

第二章 高中数学常用的数学思想

一、数形结合思想方法

中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

Ⅰ、再现性题组:

5. 设命题甲:0

A. 0b>1 D. b>a>1

7. 如果|x|≤

π2,那么函数f(x)=cosx+sinx的最小值是_____。 (89年全国文) 42?12?11?2A. B. - C. -1 D.

2228. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。

(91年全国)

A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5

35

高中数学解题思想方法全部内容

31a22??2a22222BE?BD1?cos?在△DEB中,由余弦定理有:cosα===-cos2β。222BEa2?1?cos2?所以cosα=-cos2β。【注】设参数a而不求参数a,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数
推荐度:
点击下载文档文档为doc格式
8v8yz9pruq6ksx798r5b
领取福利

微信扫码领取福利

微信扫码分享