实用标准文案
很多原理一旦上升为理论,常常伴随着繁杂的数学推导,很简单的本质反而被一大堆公式淹没,通信原理因此让
很多人望而却步。
非常复杂的公式背后很可能隐藏了简单的道理。
真正学好通信原理,关键是要透过公式看本质。
信号与系统、数字信号处理中很多复杂的公式其本质都是很简单的,我们可以通过图、动画等方式更好、更透彻地理解这些公式和原理,而不是仅仅局限于会套用这些公式(我大学毕业时就是这个水平,相信很多人和我一样)。这个帖子面向的主要是非通信专业和通信专业在大学没真正学明白的人(我就是这样的人,不是我不想学明白,大学里老师讲的太抽象了,很难理解),大部分人对“希尔伯特空间”没有什么概念,所以虽然你能用上述理论将傅立叶级数讲得很简单,但大部分人无法理解和接受。,“深入浅出通信原理”就是希望用尽可能少的公式推导和大量的图片,让大家真正理解通信原理。虽然这样有时候会显得啰嗦,但对大部分读者来讲是只有好处没有坏处的。
以复傅立叶系数为例,很多人都只是会套公式计算,真正理解其含义的人不多。对于经常出现的“负频率”,真
正理解的人就更少了。
连载1:从多项式乘法讲起
连载2:卷积的表达式
文档
实用标准文案
连载3:利用matlab计算卷积
连载4:将信号表示成多项式的形式
连载5:著名的欧拉公式
连载6:利用卷积计算两个信号的乘积
连载7:信号的傅立叶级数展开
连载8:时域信号相乘相当于频域卷积
连载9:用余弦信号合成方波信号
连载10:傅立叶级数展开的定义
连载11:如何把信号展开成复指数信号之和?
连载12:复傅立叶系数
连载13:实信号频谱的共轭对称性
连载14:复指数信号的物理意义-旋转向量
连载15:余弦信号的三维频谱图
连载16:正弦信号的三维频谱图
连载17:两个旋转向量合成余弦信号的动画
连载18:周期信号的三维频谱图
连载19:复数乘法的几何意义
连载20:用成对的旋转向量合成实信号
连载21:利用李萨育图形认识复信号
连载22:实信号和复信号的波形对比
连载23:利用欧拉公式理解虚数
连载24:IQ信号是不是复信号?
文档
实用标准文案
连载25:IQ解调原理
连载26:用复数运算实现正交解调
连载27:为什么要对信号进行调制?
连载28:IQ调制为什么被称为正交调制?
连载29:三角函数的正交性
连载30:OFDM正交频分复用
连载31:OFDM解调
连载32:CDMA中的正交码
连载33:CDMA的最基本原理
连载34:什么是PSK调制?
连载35:如何用IQ调制实现QPSK调制?
连载36:QPSK调制信号的时域波形
连载37:QPSK调制的星座图
连载38:QPSK的映射关系可以随意定吗?
连载39:如何使用IQ调制实现8PSK?
连载1:从多项式乘法说起
多项式乘法相信我们每个人都会做:
再合并同类项的方法得到的,要得到结果多项式中的某个系数,需要两步操作才行,有没有办法
一步操作就可以得到一个系数呢?
文档
实用标准文案
下面的计算方法就可以做到:
这种计算方法总结起来就是:
反褶:一般多项式都是按x的降幂排列,这里将其中一个多项式的各项按x的升幂排列。
平移:将按x的升幂排列的多项式每次向右平移一个项。
相乘:垂直对齐的项分别相乘。 求和:相乘的各结果相加。
反褶、平移、相乘、求和-这就是通信原理中最常用的一个概念“卷积”的计算过程。
连载2:卷积的表达式
利用上面的计算方法,我们很容易得到:
c(0)=a(0)b(0) c(1)=a(0)b(1)+a(1)b(0) c(2)=a(0)b(2)+a(1)b(1)+a(2)b(0) c(3)=a(0)b(3)+a(1)b(2)+a(2)b(1)+a(3)b(0)
文档
实用标准文案
其中:a(3)=a(2)=b(3)=0 在上面的基础上推广一下:
假定两个多项式的系数分别为a(n),n=0~n1和b(n),n=0~n2,这两个多项式相乘所得的多项式系数为c(n),则:
c(0)=a(0)b(0) c(1)=a(0)b(1)+a(1)b(0) c(2)=a(0)b(2)+a(1)b(1)+a(2)b(0) c(3)=a(0)b(3)+a(1)b(2)+a(2)b(1)+a(3)b(0) c(4)=a(0)b(4)+a(1)b(3)+a(2)b(2)+a(3)b(1)+a(4)b(0)
以此类推可以得到:
上面这个式子就是a(n)和b(n)的卷积表达式。
通常我们把a(n)和b(n)的卷积记为:a(n)*b(n),其中的*表示卷积运算符。
连载3:利用matlab计算卷积
表面上看,卷积的计算公式很复杂,计算过程也很麻烦(反褶,平移,相乘,求和),实际上使
用Matlab很容易计算。
以上面的a(n) = [1 1],b(n) = [1 2 5]的卷积计算为例:
>> a = [1 1]; >> b = [1 2 5]; >> c = conv(a,b);
>> c c = 1 3 7 5
后面很多地方的讲解都会用到matlab,没用过matlab的同学,请到网上下载个matlab 7.0,安
装后,将上面前4行内容拷贝到命令窗口中执行,即可得到上面的执行结果。
为了更好地理解卷积(多项式相乘,相当于系数卷积),我们用matlab画一下高中学过的杨辉
三角。
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1
文档