长方体和正方体整理与复习、表面积的变化
学习目标:
1、知识与技能:进一步掌握长方体和正方体的基本特征,掌握常用的体积单位及容积单位间的进率;能够正确计算长方体和正方体的表面积、体积(容积),能够正确解决有关的实际问题。
2、情感与态度:能积极主动地参与各种探索和操作活动,愿意与他人交谈自己的想法,提出不懂的问题,倾听不同的观点。有克服困难和运用知识解决问题的成功体验。 考点分析:
能从现实生活中发现并提出一些与长方体、正方体相关的简单的实际问题,能主动探索解决问题的有效方法,并对自己解决问题的过程作出合理的解释。 典型例题
例1、回顾与整理
回顾本单元的有关概念。 口答:
1、长方体、正方体的特征。(面、棱、顶点) 2、什么叫表面积? 3、什么是体积? 4、什么是容积?
5、常用的体积单位有哪些?常用的容积单位有哪些?它们之间有怎样的关系? 6、怎样求长方体、正方体的表面积、体积?
长方体的表面积=(长×宽 + 宽×高 + 长×高)×2
正方体的表面积= 棱长×棱长×6 长方体的体积= 长×宽×高
正方体的体积= 棱长×棱长×棱长 长(正)方体的体积= 底面积×高
例2、请你分别计算出下面每个长方体或正方体向上、向左的面的面积。
5厘米
2厘米
7厘米 5厘米
① ②
分析与解:首先要弄清楚每个长方体(含正方体)向上、向左的面是哪个面,如果是长方形,长和宽分别是多少厘米;如果是正方形,边长又是多少厘米,这样即可求出所求面的面积。
图①向上的面积是7×2 = 14(平方厘米),向左的面积是2×5 = 10(平方厘米)。 图②向上、向左的面积都是5×5 = 25(平方厘米)。
例3、江宁体育馆有一个长方体形状的游泳池,长50米,宽30米,深3米,现在要在游泳池的各个面上抹上一层水泥,抹水泥的面积有多少平方米?如果每平方米用水泥12千克,22吨够吗?
分析与解:求水泥的面积有多少平方米,实际就是求这个长方体游泳池的表面积。要计算前、后、左、右、下这5个面的面积之和。再根据每平方米用水泥的千克数,算出这个游泳池共用水泥多少千克,即可知道22吨水泥够不够用。
50×30 + 50×3×2 + 30×3×2 = 1500 + 300 + 180 = 1980(平方米)
12×1980=23760(千克)=23.76(吨) 23.76 > 22 所以,22吨水泥不够用。
答:抹水泥的面积有1980平方米。22吨水泥够不够用。
例4、厂商生产的一幅扑克牌长9厘米、宽6.5厘米、高2厘米,
1 / 4
现在要把相同的两幅扑克牌放在一起包装(如右图), 请问这个包装盒的表面积至少是多少平方厘米?
分析与解:由上图可知,这个长方体包装盒的长是13厘米(6.5×2=13厘米),宽应是9厘米,高为2厘米,根据分析结果,能准确算出这个包装盒的表面积。
(13×9 + 13×2 + 9×2)×2 =(117 + 26 + 18)×2 = 161×2
= 322(平方厘米)
答:这个包装盒的表面积是322平方厘米。
例5、一个飞毛腿电热蚊香片盒是个长方体,它的长为17厘米,宽为9厘米,高为4厘米。这个蚊香片盒的体积是多少立方厘米?
分析与解:这个蚊香盒是一个长方体形状的盒子,它的长、宽、高从题目中已经知道,根据长方体体积计算公式,即可求出结果。
长方体的体积=长×宽×高 17×9×4=612(立方厘米)
答:这个蚊香片盒的体积是612立方厘米。
例6、把60升水倒入一个长6分米,宽2.5分米的长方体水箱内,正好倒满,这个水箱深多少分米?
分析与解:把60升水倒进水箱内正好倒满,说明这个长方体水箱的容积是60升。求水箱深多少立方分米,就是求这个长方体的高是多少分米。计算公式是“体积÷长÷宽”。
60升=60立方分米
60÷6÷2.5=4(分米)
答:这个水箱深4分米。
例7、一个长1米、宽8厘米、高5厘米的长方体木料,锯成长度都是50厘米的两段,表面积比原来增
加多少平方厘米?
分析与解:锯成长度都是50厘米的两段。增加的两个长方形的长和宽应该是原来长方体的宽和高。
8×5×2=80(平方厘米)
答:表面积比原来增加80平方厘米。
【模拟试题】
一、基础巩固题
1、填空。
(1)一个长方体,长4分米,宽3分米,高2分米,它的棱长总和是( )分米,它最大的一个面面积是( )平方分米,表面积是( )平方分米,体积是( )立方分米。
(2)一个正方体棱长是2米,它的占地面积是( )平方米,表面积是( )平方米,体积是( )立方米。 2、计算下面每个形体的表面积和体积。 (1) (2)
30厘米
2.2分米
25厘米 2.2分米 60厘米 2.2分米
3、一根长方体木料,长2.5米,横截面是一个边长2分米的正方形。这根木料的体积是多少立方米?
2 / 4
4、一块石板,长1.2米,宽0.6米,厚0.2米,如果每立方分米石料重2.7千克,这块石板重多少千克? 5、一个正方体的铁皮油箱,棱长5分米,这个油箱可以盛油多少升,这个油箱要用多少铁皮?
二、思维拓展题
6、在括号里填上合适的单位。
(1)一节火车车厢的容积大约是90( )。 (2)一只冰箱的体积大约是0.32( )。 (3)课桌桌面的面积是40( )。 (4)一瓶胶水310( )。
(5)一块砖头的体积是1.5( )。 7、在括号里填上适当的数。
1500立方厘米=( )立方分米 5立方米=( )立方分米 3.5升=( )毫升 420立方分米=( )立方米 1.5升=( )立方分米=( )毫升
8、一个正方体的铁皮水箱的底面周长是32分米,这个水箱可以盛水多少升?做这个水箱至少要用多少铁皮? 9、度假村有一个长方体游泳池,长40米,宽30米,深2.5米。
(1)如果在游泳池的四周和底部抹上水泥,抹水泥部分的面积是多少? (2)如果池内水深1.8米,池里有水多少立方米? 三、自主探索题
10、把一根长4米、宽1.2米、厚0.6米的木料锯成体积相等的两个长方体,它的表面积最多增加多少平方米?最少呢?
11、测量几件日常用品包装盒的外包装盒长、宽、高的数据,算出它们的表面积和体积。
日常用品 牙膏盒 化妆品盒 皮鞋盒 【试题答案】
长 宽 高 表面积 体积 一、基础巩固题
1、填空。
(1)一个长方体,长4分米,宽3分米,高2分米,它的棱长总和是(36 )分米,它最大的一个面面积是(12)平方分米,表面积是(52)平方分米,体积是(24 )立方分米。
(2)一个正方体棱长是2米,它的占地面积是(4 )平方米,表面积是(24 )平方米,体积是( 8 )立方米。 2、计算下面每个形体的表面积和体积。 (1) (2)
30厘米
25厘米
60厘米 2.2分米
表面积:(60×25+60×30+25×30)×2=8100平方厘米 2.2×2.2×6=29.04平方分米 体 积:60×25×30=45000立方厘米 2.2×2.2×2.2=10.648立方分米
3、一根长方体木料,长2.5米,横截面是一个边长2分米的正方形。这根木料的体积是多少立方米? 2分米=0.2米 0.2×0.2×2.5=0.1(立方米)
4、一块石板,长1.2米,宽0.6米,厚0.2米,如果每立方分米石料重2.7千克,这块石板重多少千克? 1.2×0.6×0.2=0.144立方米=144立方分米 2.7×144=388.8(千克)
5、一个正方体的铁皮油箱,棱长5分米,这个油箱可以盛油多少升,这个油箱要用多少铁皮? 5×5×5=125(升)
5×5×6=150(平方分米) 二、思维拓展题
6、在括号里填上合适的单位。
(1)一节火车车厢的容积大约是90(立方米 )。 (2)一只冰箱的体积大约是0.32(立方米 )。
3 / 4
(3)课桌桌面的面积是40(平方分米 )。 (4)一瓶胶水310( 毫升 )。
(5)一块砖头的体积是1.5( 立方分米 )。 7、在括号里填上适当的数。
1500立方厘米=( 1.5 )立方分米 5立方米=(5000)立方分米 3.5升=(3500)毫升 420立方分米=( 0.42 )立方米 1.5升 =( 1.5 )立方分米 =(1500 )毫升
8、一个正方体的铁皮水箱的底面周长是32分米,这个水箱可以盛水多少升?做这个水箱至少要用多少铁皮? 32÷4=8(分米) 8×8×8=512(升) 8×8×6=384(平方分米) 9、度假村有一个长方体游泳池,长40米,宽30米,深2.5米。
(1)如果在游泳池的四周和底部抹上水泥,抹水泥部分的面积是多少? 40×30+(40×2.5+30×2.5)×2 = 1550(平方米) (2)如果池内水深1.8米,池里有水多少立方米? 40×30×1.8=2160(平方米) 三、自主探索题
10、把一根长4米、宽1.2米、厚0.6米的木料锯成体积相等的两个长方体,它的表面积最多增加多少平方米?最少呢?
最多4×1.2×2=9.6(平方米) 最少1.2×0.6×2=1.44(平方米)
11、测量几件日常用品包装盒的外包装盒长、宽、高的数据,算出它们的表面积和体积。
日常用品 牙膏盒 化妆品盒 皮鞋盒 长 宽 高 表面积 体积
4 / 4