单极性波形用正电平和零电平分别对应二进制码“1”和“0”,其波形特点是电脉冲之间无间隔,极性单一,易用于TTL,CMOS电路,缺点是有直流分量,只使用于近距离传输。 双极性波形用正负电平的脉冲表示二进制1和0,其波形特点是正负电平幅度相等,极性相反,故1和0等概率出现时无直流分量,有利于在信道中传输,并且在接收端恢复信号的判决电平为零,不受信道特性变化影响,抗干扰能力强。
单极性归零波形电脉冲宽度小于码元宽度,信号电压在一个码元终止时刻前总要回到零电平。从单极性归零波形中可以直接提取定时信息。 双极性归零波形兼有双极性和归零波形的特点。相邻脉冲之间存在零电位间隔,接收端易识别码元起止时刻,从而使收发双方保持正确的位同步。 差分波形用相邻码元的电平跳变来表示消息代码,而与码元本身的电位或极性无关。用差分波形传送代码可以消除设备初始状态的影响,特别是在相位调制系统中可以解决载波相位模糊的问题。
多电平波形的一个脉冲对应多个二进制码,在波特率相同的情况下,可以提高信息传输速率。 数字基带信号的功率谱有什么特点?它的带宽只要取决于什么?
数字基带信号的功率谱密度可能包括两个部分,连续谱部分Pu(w)及离散谱部分Pv(w)。对于连续谱而言,代表数字信息的g1(t)及g2(t)不能完全相同,所以Pu(w)总是存在的;而对于离散谱P=1/[1- g1(t)/ g2(t)]=k,且0≤k≤1时,无离散谱。它的宽带取决于一个码元的持续时间Ts和基带信号的码元波形的傅里叶变换形式。
构成AMI码和HDB3码的规则是什么?它们各有什么优缺点?
AMI的编码规则:将消息代码0(空号)仍然变换成传输码0,而把1(传码)交替的变换为传输码的+1,-1…。因此AMI码为三电平序列,三元码,伪三进制,1B/1T码。AMI的优点:(1)0,1不等概率是也无直流。(2)零频附近的低频分量小。(3)整流后及RZ码。(4)编译码电路简单而且便于观察误码情况。AMI的缺点是:连续0码多时,RZ码连0也多,不利于提取高质量的位同步信号。
HDB3的编码规则:先把消息代码变换AMI码,然后去检查AMI码的连零情况,没有四个或者四个以上的连零串时,这时的AMI码就是HDB3码;当出现四个或者四个以上的连零串时,将四个连零小段的第四个0变换于迁移非0符号同极性的符号,称为V符号(破坏码)。当相邻V符号之间有偶数个非零符号时,再将该小段的第一个0变成+B或者-B(平衡码),B符号的极性与前一非零符号的极性相反,并让后面的非0符号从V符号开始再交替变化。HDB3码的优点:保持了AMI的优点,还增加了使连零串减少到至多三个,对于定时信号的恢复是十分有利的。 简述双相码和差分双相码的优缺点。
双相码的编码原则是对每一个二进制码分别用两个具有不同相位的二进制新码去表示源码。0→01(零相位的一个周期的方波)1→10(pi相位的一个周期方波)。其优点是只用两个电平,能提取足够的定时分量,又无直流漂移,编码过程简单。其缺点是占用带宽加倍,使频带利用率降低。差分双相码中,每个码元中间电平跳变用于同步,而每个码元的开始处是否存在额外的跳变用来确定信码。有跳变则表示1,无跳变则表示0,其优点是解决了双相极性翻转而引起的译码错误,其缺点也是占用带宽加倍。
什么是码间干扰?它是如何产生的?对通信质量有什么影响?
码间干扰的产生是因为在第k个抽样时刻理想状态时抽样时刻所得的是仅有第k个波形在此时刻被取值,但在实际系统中,会有除了第k个波形以外的波形可能再抽样时刻被取值。码间干扰会导致判决电路对信号进行误判,使信号失真,产生误码,从而通信质量下降。 何谓奈奎斯特速率和奈奎斯特带宽?此时的频带利用率有多大? 理想低通传输特性的带宽称为奈奎斯特带宽,将该系统无码间干扰的最高传输速率称为奈奎
精选
斯特速率。此时频带利用率为2B/HZ。
在二进制数字基带传输系统中,有哪两种误码?他们各在什么情况下发生?
误码将由2种错误形式:发送1码,误判为0码,这种错误是在噪声的影响下使得x
无码间串扰时,基带传输系统的误码率与哪些因素有关?如何降低系统的误码率? 无码间干扰时,基带传输系统的误码率与抽样判决时的信噪比有关。要降低系统的误码率需要提高抽样判决时的信噪比,可以降低信道噪声或者提高信号平均功率。
什么是眼图?它有什么作用?由眼图模型可以说明基带传输系统的哪些性能?具有升余弦脉冲波形的HDB3码的眼图应是什么样的图形? 眼图是实验手段估计基带传输系统性能的一种方法。它是指接收滤波器输出信号波形在示波器上叠加所形成的图像。
1.最佳抽样时刻是“眼睛”张最大的时刻;2.对定时误差的灵敏度可由眼睛的斜率决定,斜率越陡,对定时误差就越灵敏;3.图中阴影区域的垂直高度表示信号畸变范围;4.图中央的横轴位置对应判决门限电平;5.在抽样时刻上,上下阴影区的间隔距离之半为噪声容限,即若噪声瞬时值超过这个容限,即可能发生错误判决。
具有升余弦脉冲波形的HDB3码的眼图中间会有一条代表0的水平线。 什么是部分响应波形?什么是部分响应系统? 人为的有规律的在抽样时刻引入码间串扰,并在接收判决前加以消除,从而可以达到改频谱特性,压缩传输频带,使频带利用率提高到理论最大值,并加速传输波形尾巴地衰落和降低对定时精度要求的目的。通常把这种波形称为部分响应波形。利用部分响应波形传输的基带系统称为部分响应系统。
部分响应技术解决了什么为题?第Ⅳ类部分响应的特点是什么? 部分响应技术提高了频带利用率,降低了对定时精度的要求。第Ⅳ类部分响应的特点是无直流分量,其低频分量小,便于边带滤波实现单边带调制。
什么是频域均衡?什么是时域均衡?横向滤波器为什么能实现时域均衡? 频域均衡:利用可调滤波器的频率特性补偿基带系统的频率特性,使得包括可调滤波器在内的基带系统总的传输特性满足无码间串扰传输的要求。起频率特性补偿作用的可调滤波器叫频域均衡器。 时域均衡器:在接受滤波器后插入一个称为横向滤波器的可调滤波器,这个横向滤波器可以将输入端在抽样时刻上有码间干扰的响应波形变换为在抽样上无码间干扰的响应波形。由于横向滤波器的均衡原理是在时域响应波形上的,所以称这种均衡为时域均衡。
横向滤波器可以将输入端在抽样时刻上有码间干扰的响应波形变换成在抽样时刻上无码间干扰的响应波形,所以横向滤波器可以实现时域均衡。 第七章 数字带通传输系统
什么是数字调制?它和模拟调制有哪些异同点?
数字调制是用载波信号的某些离散状态来表征传送的信息,在接收端对载波信号的离散调制参量进行检测。
和模拟调制一样,数字调制也有调幅,调频和调相三种基本形式,并可以派生出多种其他形式。在原理上二者并没有什么区别。只不过模拟调制是对载波信号的参量进行离散调制,在接收端也只需对载波信号的离散调制参量估值。
数字调制的基本方式有哪些?其时间波形上各有什么特点? 数字调制技术有两种方法:一是利用模拟调制方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当成模拟信号的特殊情况处理。二是利用数字信号的
精选
离散取值的特点通过开关键控载波,从而实现数字调制,这种调制方式通常有幅度键控、频率键控和相位键控。其时间波形上来说,有可能是不连续的。 什么事振幅键控?OOK信号的产生和解调方法有哪些?
振幅键控:用载波幅度的有无来表示传送的信息,一般用开关电路来控制。
OOK信号一般有两种产生方法:1,模拟幅度调制法;2,开关电路控制的键控法。OOK信号有两种解调方法:非相干解调(包络检波法)和相干解调法(同步检测法)。 2ASK信号传输带宽与波特率或基带信号的带宽有什么关系? 2ASK信号的带宽是基带信号带宽的两倍。
什么事频移键控?2FSK信号产生和解调方法有哪些? 频移键控是指用不同的载频来表示所传送的数字信息。(1)利用矩形脉冲序列对一个载波进行调频产生;(2)利用受矩形脉冲序列控制的开关电路对两个不同的频率进行选通,即键控法。
FSK的解调通常采用非相干解调和相干解调两种方法,同时还有鉴频法,过零检测法和差分检波法。
2FSK信号相邻码元的相位是否连续变化与其产生方法有何关系?
采用模拟调频电路实现的2FSK信号,其相位变化是连续的;采用数字键控法产生的2FSK信号其相位变化不一定连续。
相位不连续2FSK信号的传输带宽与波特率或基带信号的带宽有什么关系? 相位不连续2FSK信号的带宽大于基带信号带宽的2倍。 什么事绝对移相?什么事相对移相?他们有何区别? 绝对移相是用载波的相位直接表示码元;相对移相是用相邻码元的相对载波相位值表示数字信息。相对移相信号可以看做是把数字信息序列绝对码变换成相对码,然后根据相对码进行绝对移相而成。
2PSK信号和2DPSK信号可以用哪些方法产生和解调?它们是否可以采用包络检波法解调?为什么?
2PSK信号和2DPSK信号可以用模拟调制法和键控调制法产生,2PSK信号可以用极性比较法,鉴相法解调,2DPSK信号通常用极性比较-码变换法,差分相干法解调。
它们都不能采用包络检波法解调,因为它们是用相位而不是振幅来携带传送信息的。
2PSK信号及2DPSK信号的功率谱密度有何特点?试将它们与OOK信号的功率谱密度加以比较。
2PSK信号的功率谱密度同样由离散谱和连续谱组成,但当双极性基带信号以相等的概率出现时,不存在离散谱部分。同时,连续谱部分与2ASK信号基本相同,因此,2PSK信号的带宽也与2ASK信号相同。此外,2DPSK信号的带宽也与2ASK信号的相同。 二进制数字调制系统的误码率与哪些因素有关? 与其调制方式、解调方式和信噪比有关。 2FSK与2ASK相比有哪些优势?
在相同的解调方式下,若要得到相同的误码率,2FSK需要的信噪比比2ASK小3dB。 2PSK与2ASK和2FSK相比有哪些优势?
在相同的误码率情况下,2PSK需要的信噪比比2ASK小6dB,比2FSK小3dB。 2DPSK与2PSK相比有哪些优势? 在相同的信噪比情况下,采用相干解调方式,2DPSK与2PSK的误码率减少一半,而且2DPSK还可以采用非相干解调方式。
何谓多进制数字调制?与二进制数字调制相比,多进制数字调制有哪些优缺点?
采用多种基带波形的数字调制称为多进制数字调制,优缺点为:1,在相同传码率时,多进
精选
制比二进制传输的信息量打;2,在相同传信率时,多进制比二进制所需要的码率低,带宽窄;3,在相同噪声情况下,多进制的抗噪声性能不如二进制好。 第九章 模拟信号的数字传输
1 模拟信号在抽样后,是否变成时间离散和取值离散的信号了? 模拟信号在进行抽样和变成时间离散信号,其取值仍然是联续的 2 试述模拟信号抽样和PAM的异同点
模拟信号抽样的PAM的共同点都是时间离散取值连续的信号,不同点是抽样信号的频谱是周期延拓,幅度不下降,而PAM频谱是周期延拓,幅度下降
3 对于低通模拟信号而言,为了能无失真恢复,理论上对于抽样频率有什么要求? 理论上为了使抽样频率能恢复到原来的模拟信号,需要采样频率大于等于信号最高频率的两倍
4 试说明什么是奈奎斯特速率和奈奎斯特间隔
对无失真恢复低通信号的所要求的最低采样的最低采样速率称为奈奎斯特速率,与此相对的最小抽样时间间隔称为奈奎斯特间隔 5 试说明抽样产生混叠的原因
在信号域内的采样,会造成信号频谱的周期延拓,当采样频率小于信号带宽是,就会造成不同周期的混叠。
7 PCM电话通信常用的抽样标准频率等于多少 8000hz
9 量化信号有哪些优点和缺点
信号量化的优点是可以把模拟信号变成数字信号,从而采用通过数字调制的进行传输,其缺点是量化会产生量化误差
10 对电话的非均匀量化有什么优点
电话信号主要集中在小幅度区间,故采用非均匀量化能够降低量燥比和传输比特数 11 在A率中 若采用A=1 将得到什么压缩效果 在A率用A=1 将表示不进行压缩
13 13折现律中折线段数为什么比15的折现率中的少两段
因为13折线律第一段和第二段的斜率相同,合并变成了一条折线,而15 折线律中,每段斜率都不相同
14 我国采用的电话量化标准,是符合13折线律还是15 折线律? 符合13折线律
15 在PCM电话信号中,为什么采用折叠码进行编码 因为电话信号的幅值只要集中在幅度较小的区间,采用折叠码进行编码可以减少误码对信号造成的影响
16 何为信号量燥比? T他有无办法消除
信号量燥比是信号平均功率与量化噪声平均功率的取值,他只能尽量减少,无法完全消除 17 在PCM系统中,信号量燥比和信号带宽有什么关系
在低通信号的最高频率给定是PCM系统的输出量燥比随系统带宽按指数规律增加 18增量调制系统中有哪些量化噪声 一般有量化噪声和过载量化噪声
19DPCM和增量调制之间有什么关系
增量调制可以看成是一种最简单的DPCM,当DPCM中量化器的量化电平去2时,此系统为增量调制系统
20试述时分复用的优点
精选
时分复用的优点在于便于实现数字通信,易于制造,适于采用集成电路实现,生产成本低 21 适述复用和复接的异同点
复用的目的是为了扩大通信链路的容量,在一条链路上传输多路独立的信号,实现多路通信,在复用的过程中将低次群合并成高此群的过程成为复接
23 PDH体系中各层次的比特率不是整数倍的关系,因为每次复接是需要插入同步码元和信令码元。
通信原理(第六版)课后习题答案
第一章 绪论
精选