好文档 - 专业文书写作范文服务资料分享网站

初中数学经典几何题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

4.过D作AQ⊥AE ,AG⊥CF ,由S

ADE=

SABCD2=SDFC,可得:

AEPQAEPQ=,由AE=FC。 22 可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。

经典难题(五)

1.(1)顺时针旋转△BPC 600 ,可得△PBE为等边三角形。

既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上, 即如下图:可得最小L=

第 11 页 共 14 页

(2)过P点作BC的平行线交AB,AC与点D,F。 由于∠APD>∠ATP=∠ADP,

推出AD>AP ① 又BP+DP>BP ② 和PF+FC>PC ③ 又DF=AF ④

由①②③④可得:最大L< 2 ; 由(1)和(2)既得:

≤L<2 。

2.顺时针旋转△BPC 600 ,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上, 即如下图:可得最小PA+PB+PC=AF。

第 12 页 共 14 页

既得AF=13+(+1)2 = 2+423= 4+23 2 =

2(3+1)2(3+1) = 226+2 。 2 =

3.顺时针旋转△ABP 900 ,可得如下图:

既得正方形边长L = (2+222)+()2a = 5+22a 。 22

第 13 页 共 14 页

4.在AB上找一点F,使∠BCF=600 ,

连接EF,DG,既得△BGC为等边三角形,

可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE 。

推出 : △FGE为等边三角形 ,可得∠AFE=800 ,

既得:∠DFG=400 又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400 推得:DF=DG ,得到:△DFE≌△DGE , 从而推得:∠FED=∠BED=300 。

第 14 页 共 14 页

① ②

初中数学经典几何题及答案

4.过D作AQ⊥AE,AG⊥CF,由SADE=SABCD2=SDFC,可得:AEPQAEPQ=,由AE=FC。22可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。经典难题(五)1.(1)顺时针旋转△BPC600,可得△PBE为等边三角形。
推荐度:
点击下载文档文档为doc格式
8u82v243cp036aw5tvxo0daes3y38300x5b
领取福利

微信扫码领取福利

微信扫码分享