2.3.1 等差数列的前n项和(一)
项目 课题 (共 1 课时) 一、知识与技能 掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题. 内容 2.3.1 等差数列的前n项和(一) 修改与创新 二、过程与方法 通过公式的推导和公式的运用,使学生体会从特殊到一教学 般,再从一般到特殊的思维规律,初步形成认识问题、解决 目标 问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.三、情感态度与价值观 通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感. 教学教学重点 等差数列的前n项和公式的理解、推导及应用. 重、 教学难点 灵活应用等差数列前n项和公式解决一些简单的难点 有关问题. 教学 多媒体课件 准备 教学导入新课
过程 教师出示投影胶片1: 印度泰姬陵(Taj Mahal)是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征. 陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段) 生 只要计算出1+2+3+…+100的结果就是这些宝石的总数. 师 对,问题转化为求这100个数的和.怎样求这100个数的和呢?这里还有一段故事. 教师出示投影胶片2:
高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5 050.” 教师问:“你是如何算出答案的?” 高斯回答说:因为1+100=101;2+99=101;…;50+51=101,所以101×50=5 050. 师 这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢? 生 高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以1+2+3+…+100=50×101=5 050. 师 对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5 050了. 高斯算法将加法问题转化为乘法运算,迅速准确得到了结果. 作为数学王子的高斯从小就善于观察,敢于思考,所以他能
从一些简单的事物中发现和寻找出某些规律性的东西. 师 问:数列1,2,3,…,100是什么数列?而求这一百个数的和1+2+3+…+100相当于什么? 生 这个数列是等差数列,1+2+3+…+100这个式子实质上是求这数列的前100项的和. 师 对,这节课我们就来研究等差数列的前n项的和的问题. 推进新课 [合作探究] 师 我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图,则图中第1层到第21层一共有多少颗宝石呢? 生 这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和就好首尾配成对了. 师 高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们是否有简单的方法来解决这个问题呢? 生 有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是(1?21)?21. 2师 妙得很!这种方法不需分奇、偶个项的情况就可以求和,
真是太好了!我将他的几何法写成式子就是: 1+2+3+…+21, 21+20+19+…+1, 对齐相加(其中下第二行的式子与第一行的式子恰好是倒序) 这实质上就是我们数学中一种求和的重要方法——“倒序相加法”. 现在我将求和问题一般化: (1)求1到n的正整数之和,即求1+2+3+…+(n-1)+n.(注:这问题在前面思路的引导下可由学生轻松解决) (2)如何求等差数列{an}的前n项的和Sn? 生1 对于问题(2),我这样来求:因为Sn=a1+a2+a3+…+an, Sn=an+an-1+…+a2+a1, 再将两式相加,因为有等差数列的通项的性质:若m+n=p+q,则am+an=ap+aq,所以Sn? n(a1?an).(Ⅰ) 2生2 对于问题(2),我是这样来求的: 因为Sn=a1+(a1+d)+(a1+2d)+(a1+3d)+…+[a1+(n-1)×d], 所以Sn=na1+[1+2+3+…+(n-1)]d=na1+即Sn=na1+n(n?1)d, 2n(n?1) d.(Ⅱ) 2[教师精讲] 两位同学的推导过程都很精彩,一位同学是用“倒序相加法”,后一位同学用的是基本量来转化为用我们前面求得的