好文档 - 专业文书写作范文服务资料分享网站

深度学习在人脸识别领域的研究情况 报告

天下 分享 时间: 加入收藏 我要投稿 点赞

深度学习在人脸识别领域的研究

情况

姓 名: 88 学 号: 88

88

2021年6月

1. 深度学习的历史。

最早的神经网络是1943年提出的MCP人工神经元模型,其在1958年被应用于感知器算法中,用于机器学习分类任务。然而,尽管这样的方法被证明是可收敛的,却因为被结构简单(线性模型),分类认为受限(二分类,复杂的任务无法正确分类)而使得神经网络的研究处于一次长达17年的低潮期。

在1986年,Hinton发明了BP算法,其由信号的正向传播和误差的反向传播两个过程组成,应用于多层感知器(MLP),并且采用Sigmoid进行非线性映射解决了之前非线性分类学习问题。所谓的BP算法,也就是在正向传播时将输入样本输入网络,经过隐层传递到输出层,输出值与期望值不同则进行误差的反向传播,而反向传播就是按原通路通过隐层传至输入层,将误差分摊各个神经单元,获得各层神经元的误差信号响应,修正各个神经单元的权重占比。最终,人们将得到一个较为适合的权重模型,其实际输出与期望输出的误差达到最低限度,可以被用于实际任务当中。

然而说到真正意义上的卷积神经网络,LeNet可以说算的上是现代使用深度学习的基石,其结构于1989年被LeCun提出,其在数字识别的效果也非常好。例如,现在很多AI入门人员都必须要经历的LeNet-5模型实现MNIST数据识别任务。可是这样的方法却并没有引起很大的关注,我想可能是因为科技发展和理论实践不相适应造成的,更何况神经网络缺少相应的严格数学理论支持(到现在这个问题还是存在),使得刚刚升起的胜利白帆又再一次降下。

尽管深度学习的研究再一次的处于低谷期,但并不意味着深度学习停滞不前。1997年,著名的长短期记忆网络(LSTM)被提出,其解决了一般循环神经网络(RNN)存在长期依赖问题,即相较于RNN解决了长序列训练过程中存在梯度消失和梯度爆炸问题。作为一个非线性模型,LSTM可用于构建大型DNN,在实际任务中,LSTM可被用于语音识别等方面。现如今我们可以利用多种深度框架对其进行复现,也算得上是对那时研究出该架构的人员的一种安慰。

值得一提的是在深度学习火热之前,统计学习方法占据上风,从1986

年的决策树方法到2001年的随机森林,从1995年的线性SVM(支持向量机)到2000年的非线性的KernelSVM,以及一些著名的HMM,朴素贝叶斯等方法,它们也推进人类对于人工智能领域的实现,并且也可以和深度学习相辅相成。到现在,我们依旧可以使用DNN与类似SVM和CRF搭配进行分类任务,统计学习方法中一些指标也通常被作为设计网络合理性的评判标准。

2006年,Hinton又提出了解决DNN训练当中梯度消失解决方法,现在的研究者也依旧基本遵循这样的方法,即无监督预训练初始化权值和有监督参数微调。值得一提的是为了更好的调参用于快速精准训练,预训练模型以及优化器SGD和ADAM被广泛应用,也算的上是对这个方法提出的最好证明。

从2012年AlexNet参加ImageNet图像分类比赛碾压第二名SVM方法事件开始,深度学习才又渐渐被关注起来。与此同时,为了更好的实现深度学习机制,一些著名的深度学习框架也被提出,例如Caffe,TensorFlow,Pytorch,Keras,MXNet等,它们也随着计算机编程语言的发展被一一实现,现如今Python语言对其都有支持,我想这也是Python近几年火热的原因之一。再加上显卡近几年的快速发展,其在支持并行处理高效计算的能力得到提升,不仅扩大了游戏行业和影视行业的影响力,同时也使得深度学习的研究也得到了越来越多的企业关注(高效训练,大规模集群)。

除此之外,ResNet和DenseNet的提出,又再一次给搭建更深层次网络奠定基础。也因此越来越多的网络结构和理论研究基于前者被设计和实现,越来越多的应用和产品也被落地使用。

2. 人脸识别流程。

2.1 人脸检测于定位。

人脸检测是使用检测器对图像滑动窗口中的分类和定位,确定滑窗内是不是人脸,以及检测框的具体位置。

2.2 特征提取。

特征提取是即提取特征向量,蕴含着几何特征或者表征特征。几何特征:如眼、鼻等几何关系,特点是直观,量小。表征特征:算法提取的局部或者全局特征。

2.3 识别和认证。

深度学习在人脸识别领域的研究情况 报告

深度学习在人脸识别领域的研究情况姓名:88学号:88882021年6月1.深度学
推荐度:
点击下载文档文档为doc格式
8shx27prkh1is530855j3blzb1bw3200hp0
领取福利

微信扫码领取福利

微信扫码分享