最新整理初中数学
概率
1. 进一步在具体情境中了解概率的意义,能够运用列举法计算简单事件发生的概率,并阐明理由.
m
2.应用P(A)=解决一些实际问题.
n
m
重点:运用P(A)=解决实际问题.
n
难点:运用列举法计算简单事件发生的概率.
一、自学指导.(10分钟) 自学:阅读教材P133.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)
1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?
1
解:5种;. 5
2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 1
解:6种;.
6
3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.
(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.
131
解:(1);(2);(3).
442
点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性m
相等.因此,它可以应用“P(A)=”,即“列举法”求概率.
n
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)
最新整理初中数学
1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A区域(划线部分),A区域外的部分记为B区域,数字3表示在A区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A区域还是B区域?
思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?
2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面向上”的概率?
(2)掷两枚硬币,求下列事件的概率: A.两枚硬币全部正面朝上; B.两枚硬币全部反面朝上;
C.一枚硬币正面朝上,一枚硬币反面朝上. 思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?
点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )
1535A.B.C.D. 161688
2.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )
531517A.B.C.D. 368363633.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为____.
44.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.
111
解:(1);(2);(3).
623
(学生总结本堂课的收获与困惑).(2分钟)