数学九上人教版邯郸新思维辅导教育学校数学专题
训练二次根
The following text is amended on 12 November 2020.
邯郸新思维辅导教育学校
数学专题训练
第1讲 二次根式
一.知识详解
1.二次根式的概念
一般地,我们把形如a(a≥0)的式子叫做二次根式,“根号. 二次根式a的实质是一个非负数a的算术平方根. 2.确定二次根式中字母的取值范围
要使a有意义,被开方数a就必须是非负数,即a≥0,由此可以确定被开方数中字母的取值范围. 二.专题训练
1.下列各式是否为二次根式
(1)m2?1;(2)a2;(3)?n2;(4)a?2(5)x?y;(6)x2?3;(7)a2;
” 称为二次
(8)?a2;(9)m?7;(10)2;(11)33;(12)(x>0);(14)0;(15)42;(16)0).
2. 当x为何值时,下列各式在实数范围内有意义 (1) (3)
(5) 2?a?
1;(13)xx1;(17)x?y(x≥0,y?≥x?yx?3 (2)
2?4x 3?5x (4)
x?1
x?32a (6) 2
x?3a?1(7)
1?2xx (8) ?2x?
x?2x?13.下列各式中15、3a、b2?1、a2?b2、m2?20、?144,二次根式的个数是( )
A.4 B.3 C.2 D.1
4.数a没有算术平方根,则a的取值范围是( ) A.a>0 B.a≥0 C.a<0 D.a=0 5.把(a-1) 1
根号外的因式移入根号内,其结果是( ) 1-a
A.1-a B.-1-a C.a-1 D.-a-1 6.若3m?1有意义,则m能取的最小整数值是( ) A.m=0 B.m=1 C.m=2 D.m=3 7.当x ________时,式子
5?3x有意义。
|x|?48.要使
1-2x
+(-x)0有意义,则x的取值范围是 . x+3
1
1+ =23
1 ,3
1
2+ =34
1 ,4
13+ 5
9.观察下列各式:=41
,……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是 5
10. 一个矩形的面积是18cm2,它的边长之比为2:3,它的边长应为多少
111.当x是多少时,2x?3+在实数范围内有意义
x?1
12.已知y=x?3-3?x,求x+y的值.
13.已知3x?5y?7(其中x?0),求m?2x?3y的取值范围.
附加:
1.下列说法正确的是 ( ) A.0不是二次根式 C.当a?0时,
?a?2??a
B. ?a无意义 D.若ab有意义,则ab?0
2. x?3在实数范围内有意义,则x的取值范围是( ) A. x?3 B. x?3 C. x?3 D. x?3 3.若x?y?3?2x?y?0,则x?y的值为( )
4.函数y?x?3 中,自变量x的取值范围是 .