全等三角形的判定
一、知识点梳理 知识梳理: 一般三角形 直角三角形 条件 边角边(SAS),角边角(ASA) 斜边、直角边(HL) 边边边(SSS),角角边(AAS) 性质 对应边相等、对应角相等、周长相等、面积相等、 对应线段(如对应边上的高、中线、对应角平分线)相等 备注 判定三角形全等必须至少有一组对边相等 注意:判定两个三角形全等必须具备的三个条件中“边”是不可缺少的,边边角(SSA)和角角角(AAA)不能作为判定两个三角形全等的方法。 技巧平台:
证明两个三角形全等时要认真分析已知条件,仔细观察图形,明确已具备了哪些条件,从中找出已知条件和所要说明的结论的内在联系,从而选择最适当的方法。根据三角形全等的条件来选择判定三角形全等的方法,常用的证题思路如下表:
已知条件 两角 一角及其对边 一角及邻边 两边 二、例题讲解 例1.(SSS)如图,已知AB=AD,CB=CD,那么∠B=∠D吗?为什么? 分析:要证明∠B=∠D,可设法使它们分别在两个三角形中,再证它们所 在的两个三角形全等,本题中已有两组边分别对应相等,因此只要连接 AC边即可构造全等三角形。 ?AB?AD?
解:相等。理由:连接AC,在△ABC和△ADC中,?CB?CD
?AC?AC??△ABC≌△ADC(SSS),?∠B=∠D(全等三角形的对应角相等)
B C D 寻找的条件 夹边或任一边 任一角 角的另一邻边或边的另一邻角或边的对角 夹角或另一边或直角 选择的判定方法 ASA或AAS AAS SAS或ASA或AAS SAS或SSS或HL A 点评:证明两个角相等或两条线段相等,往往利用全等三角形的性质求解。有时根据问题的需要添加适当的辅助线构造全等三角形。
例2.(SSS)如图,△ABC是一个风筝架,AB=AC,AD是连接A与BC中点D的支架,证明:AD⊥BC.分析:要证AD⊥BC,根据垂直定义,需证∠ADB=∠ADC,而∠ADB=∠ADC可由△ABD≌△ACD求得。
证明:?D是BC的中点,?BD=CD
?AB?AC?在△ABD与△ACD中,?BD?CD
?AD?AD?A B D C
?△ABD≌△ACD(SSS),?∠ADB=∠ADC(全等三角形的对应角相等) ?∠ADB+∠ADC=180?(平角的定义)
?∠ADB=∠ADC=90?,?AD⊥BC(垂直的定义)
D A E 例3.(SAS)如图,AB=AC,AD=AE,求证:∠B=∠C. 分析:利用SAS证明两个三角形全等,∠A是公共角。
?AB?AC???A??A证明:在△ABE与△ACD中,?
AE?AD?B C ?△ABE≌△ACD(SAS),?∠B=∠C(全等三角形的对应角相等)
例4.(SAS)如图,已知E,F是线段AB上的两点,且AE=BF,AD=BC,∠A=∠B,求证:DF=CE. 分析:先证明AF=BE,再用SAS证明两个三角形全等。 证明:?AE=BF(已知)
?AE+EF=BF+FE,即AF=BE
A E F B D C ?AD?BC?在△DAF与△CBE中,??A??B
?AF?BE??△DAF≌△CBE(SAS),?DF=CE(全等三角形的对应角相等)
点评:本题直接给出了一边一角对应相等,因此根据SAS再证出另一边(即AF=BE)相等即可,进而推出对应边相等。
练习、如图,AB,CD互相平分于点O,请尽可能地说出你从图中获得的信息(不需添加辅助线)。
例5.( ASA)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F,求证:AB=DE.
C O B A D 分析:要证AB=DE,结合BE=CF,即BC=EF,∠ACB=∠F逆推,即要找到证△ABC≌△DEF的条件。
证明:?AB∥DE,?∠B=∠DEF. 又?BE=CF,?BE+EC=CF+EC,即BC=EF.
??B??DEF?在△ABC与△DEF中,?BC?EF
??ACB??F??△ABC≌△DEF(ASA),?AB=DE.
B E C F A D 例6.(AAS)如图,已知B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B,求证:△ABC≌△CDE.
分析:在△ABC与△CDE中,条件只有AC=CE,还需要再找另外两个条件, A 由AC∥DE,可知∠B=∠D,于是△ABC≌△CDE的条件就有了。 D 证明:?AC∥DE,?∠ACB=∠E,且∠ACD=∠D. 又?∠ACD=∠B,?∠B=∠D.
??B??D?在△ABC与△CDE中,??ACB??E,
?AC?CE??△ABC≌△CDE(AAS).
B C E 解题规律:通过两直线平行,得角相等时一种常见的证角相等的方法,也是本题的解题关键。
例7.(HL)如图,在Rt△ABC中,∠A=90?,点D为斜边BC上一点,且BD=BA,过点D作BC得垂线,交AC于点E,求证:AE=ED.
分析:要证AE=ED,可考虑通过证相应的三角形全等来解决,但图中没有现成的三角形,因此要考虑添加辅助线构造出两线段所在的三角形,结合已知条件,运用“三点定形法”知,连接BE即可。 证明:连接BE.
?ED⊥BC于D,?∠EDB=90?.
A E ?BA?BD在Rt△ABE与Rt△DBE中,?
?BE?BE?Rt△ABE≌Rt△DBE(HL),?AE=ED.
B D C 解题规律:连接BE构造两个直角三角形是本题的解题关键。 特别提醒:连公共边是常作得辅助线之一。
A
三、课堂同步练习
1.如图,AB=AD,CB=CD,△ABC与△ADC全等吗?为什么?
2.如图,C是AB的中点,AD=CE,CD=BE,求证△ACD≌△CBE.
3.如图,△ABC中,AB=AC,AD是高,求证:(1)BD=CD;(2)∠BAD=∠CAD.
4.如图,AC⊥CB,DB⊥CB,AB=DC,求证∠ABD=∠ACD.
5.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证∠A=∠D.
C B A D B D C A B E C D A C B D
6.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DC∥AB.
7.如图,点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥FD.求证AB=DE,AC=DF.
8.如图,∠1=∠2,∠ABC=∠DCB。求证:AB=DC。
B12CAD D A A B O D C
B F C E E?ED,?1??29. 已知B,求证:? ABE??CDE