-*
a2n?2?b2n?2当a?b时,R?limn??a2n?b2n?b?a2???b2?a??lim?a, 2nn???b?1????a??a?22??a?bb?lim??2n?b, n???a????1?b?2n2na2n?2?b2n?2当a?b时,R?limn??a2n?b2n?R?max?a,b?
17、将下列函数按z的幂展开,并指明收敛范围。
a.
z2?z0edz;b. cos2z。
?z2z2n解: a.e??,z??,
n?0n!2n??zzz2nz2n?1 z??。 ??edz???dz???dz??000n!n?0n!n?0n?0n!?2n?1?zz2z???1??2z?1b. cos2z??1?cos2z?,cos2z??2?2n?!n?0?2n?12n1???1?2z2?????z??。 ???cosz???2n?02n!??nn2n?1?22nz2n??? z??,
?2n?!n?0?n18、将下列函数按z?1的幂展开,并指出收敛范围。
a. cosz;b.
zz;c. 2。
z?2z?5z?2解: a.cosz?cos??1??z?1????cos1cos?z?1??sin1sin?z?1?。
??1??z?1??1??z?1???cos?z?1???,sin?z?1???2n!???2n?1?!n?0n?0?n2nn2n?1,
??1??z?1?cosz?cos1??2n?!n?0?n2n??1??z?1??sin1??2n?1?!n?0?n2n?1 z?1??。
nn?2n???2n?1?Q??1?cos1?cos??1?,??1?sin1??cos???1?。
?2??2?-*
?2n??2n?1?cos??1cos??1???????2?z?12n??z?12n?1 ?cosz??????2???2n?!?2n?1?!n?0n?0?n?cos??1???2??z?1n z?1??。 ?????n!n?0或:令f?z??cosz,则f?n??z??cos??z??n?2??n??n?f1?cos,????1?2????, ?所以cosz??n?0??n??cos?1???f?1?nn2???z?1????z?1? z?1??。 n!n!n?0?n?b.
z221 ?1??1??z?1z?2z?231?32n?z?1?n?z?1??1????1???1?2?1??n?1 z?1?3 ??3n?03?3?n?0?n?nc.
zz?1?1z?11 ???2222z?2z?5?z?1??4?z?1??4?z?1??4 ?z?1?411 ??22?z?1?4?z?1?1??1?????2??2?1?1nn?z?1?Q????1t???t?1 令?,?t????1?t2??n?02???1??z?1?,z?1?1?z?1?2 ?z?1??????1???????224n?2?n?0n?0?z?1?1????2?1?2nn2nnzz?1???1??z?1?1???1??z?1?从而2????z?2z?54n?04n4n?04nn2nn2n
??1??z?1? ??4n?1n?0?n2n?1??1??z?1?
??4n?1n?0?n2n??n?0???1?n4n?1??z?1?2n??z?1?2n?1? z?1?2
??-*
进一步,?n?0???1??z?1?4n?1n2n?1??1??z?1? ??n?1?n?0n2n4?n?奇数????1?n?122n?1?z?1??1?1???1??n?2?2?nnn?偶数????1?n22n?2?z?1???n?0n???1?21?1???1??n?2?2?3???1?2nn????n?z?1?
n????1?z所以2??n3???1?z?2z?5n?0n?22????n?z?1?
z?1?2。
19、将下列函数在指定的环域内展成罗朗级数。
z?1z2?2z?5a.2,0?z?1,1?z??;b.,1?z?2。 2z(z?1)?z?2??z?1?解: a.
z?1z?1?212???。
z2(z?1)z2(z?1)z2z2(z?1)?11?????zn, 在0?z?1内,z?11?zn?0???z?1111n?2n?2?2?z?2?2?z??2?2?zn。 ?2z(z?1)zzzn?0n??2n??1?1111?111???n??n, 在1?z??内,?1,
zz?1z1?1zn?0zn?1zz??z?11111?2?2?n?2?2?2?n。 ?2z(z?1)zzn?1zn?3zz2?2z?512?? b. 22?z?2??z?1?z?2z?1在1?z?2内,
z11?1,且?1?2?1,
zz2n?1111??z?zn????????????n?1。 z?221?z2n?0?2?n?022-*
2212???z2?1z21?1z2z2?1n?11?1?2?1, ??????2n2nzzn?0n?1n???z2?2z?5znn?11????2?1??2n。 ??n?12z?z?2??z?1?n?02n?120、将下列函数在指定点的无心邻域内展成罗朗级数,并指出成立范
围。 a.
1?z2?1?12,z?i【
n?????an?z?i?】;b.?z?1?en211?z,z?1【
n?????an?z?1?】。
n解: a. z?i?的无心邻域为0?z?i?R,
?z2?1?2?1?z?i??z?i?2,且21?z?i?2??nd?1???, dz?z?i?n111111???1??z?i? 【i???1?2】 ?????nz?i2i?z?i2i1?z?i2in?0?2i?2i??n?0???1??z?i?2?n?1n?12n z?i?2i?2。
n?n?12
1?z?i?12??1??z?i?????1?d????dzn?02n?1n?12n?12n?z?i?2n?1n?1,
n?3??z2?1???1?z?i?2?n?1???1?n?12n?z?i?2n?1nn?1??n?1???1?n?12n?z?i?2n?1
?????1??n?3??z?i?2n?4z?n2? 0?z?i?2。
n??2zn b.Q当z??时,e??,
n?0n!?e11?z??1???? ?nnn?0n!?1?z?n?0n!?z?1??1?n0?z?1??,
-*
??z?1?e211?z??1???n?2n?0n!?z?1??n??1??? nn??2?n?2?!?z?1??n0?z?1??。
21、把f?z??1展成下列级数。 1?z(1)在z?1上展成z的泰勒级数; (2)在z?1上展成z的罗朗级数; (3)在z?1?2上展成(z?1)的泰勒级数; (4)在z?1?2上展成?z?1?的罗朗级数。
?11??zn,解:(1)在z?1上,【在z?1上解析】。 1?zn?01?z?1111??1?1???????????n。 (2)在z?1上,1?zz1?1zn?0?z?n?1zzn(3)
z?11?1,所以 在z?1?2上解析,且21?z??z?1?。 11111??z?1??????????1?z2??z?1?21?z?12n?0?2?n?02n?12nn(4)在z?1?2上,
2?1,所以 z?1?11111?2n2n?1?????????。 ?nn21?z2??z?1?z?11?z?1n?0?z?1?n?1?z?1?z?1第四章习题解答
22、确定下列各函数的孤立奇点,并指出它们是什么样的类型(对于极点,
要指出它们的阶),对于无穷远点也要加以讨论: (1)
z?1z?z2?1?;(2)cos211;(3)。 z?isinz?cosz