23. 操作与探究:点P为数轴上任意一点,对点P进行如下操作:先把点P表示的数
乘以三分之一,再把所得数对应的点向右平移0.5个单位,得到点P的对应点??′. (1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段??′??′,其中点A,B的对应点分别为??′,??′.若点A表示的数是?3,则点??′表示的数是______;若点??′表示的数是2,则点B表示的数是______;已知线段AB上的点E经过上述操作后得到的对应点??′与点E重合,则点E表示的数是______.
(2)如图,在平面直角坐标系中,对正方形ABDC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(??>0,??>0),得到正方形??′??′??′??′及其内部的点,其中点A,B的对应点分别为??′,??′,已知正方形ABDC内部的一个点F经过上述操作后得到的对应点??′与点F重合,请求出点F的坐标.
24. 如图,以直角三角形AOB的直角顶点O为原点,以OB,OA所在直线为x轴和y
轴建立平面直角坐标系,点??(0,??),??(??,0)满足√???2??+|???4|=0. (1)直接写出A点的坐标为______;B点的坐标为______.
第6页,共18页
(2)如图①,已知坐标轴上有两动点M,N同时出发,M点从B点出发沿x轴负方N点从O点出发以2个单位长度每秒的速向以1个单位长度每秒的速度匀速移动,
AB的中点C的坐标是(2,4),度沿y轴正方向移动,点N到达A点整个运动随之结束.设运动时间为??(??>0)秒,是否存在这样的t,使△??????,△??????的面积相等?若存在,请求出t的值;若不存在,请说明理由.
(3)如图②,点D是线段AB上一点,满足∠??????=∠??????,点F是线段OA上一动点,连BF交OD于点G,当点F在线段OA上运动的过程中,
∠??????+∠??????
∠??????
的值是否
会发生变化?若不变,请求出它的值;若变化,请说明理由.
第7页,共18页
答案和解析
1.【答案】A
【解析】解:A.√6是无理数; B.3.14是有限小数,属于有理数; C.2是整数,属于有理数; D.是分数,属于有理数; 3故选:A.
根据有理数的分类和无理数的概念求解可得.
本题主要考查无理数,解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有??的数,如分数??2是无理数,因为??是无理数.
1
2.【答案】C
【解析】解:点的坐标在第三象限,可以为(?2,?3), 故选:C.
根据各象限内点的坐标特征解答即可.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(?,+);第三象限(?,?);第四象限(+,?).
3.【答案】D
【解析】解:根据垂线段最短得出P到直线l的距离是不大于3cm, 故选:D.
根据垂线段最短和点到直线的距离的定义得出即可.
本题考查了点到直线的距离的定义,能熟记点到直线的距离的定义的内容是解此题的关键,注意:从直线外一点到这条直线的垂线段的长度,叫点到直线的距离.
4.【答案】B
【解析】解:A、当∠1=∠2时,可得:????//????,不合题意; B、当∠3=∠4时,可得:????//????,符合题意;
C、当∠??????+∠??=180°时,可得:????//????,不合题意;
第8页,共18页
D、当∠??=∠5时,可得:????//????,不合题意; 故选:B.
直接利用平行线的判定方法分别判断得出答案.
此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.
5.【答案】C
【解析】解:如图,∵∠1=55°,∠??????=90°, ∴∠3=35°, ∵????//????, ∴∠2=∠3=35°. 故选:C.
∠??????=90°,先根据∠1=55°,求得∠3=35°,再根据平行线的性质,求得∠2的度数. 本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.
6.【答案】A
【解析】解:(1)如果直线??//??,??//??,那么??//??,是真命题; (2)相等的角是对顶角,是假命题;
(3)两条直线被第三条直线所截,内错角相等,是假命题. 真命题有1个, 故选:A.
根据真命题和假命题定义进行分析即可.
此题主要考查了命题与定理,关键是掌握任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
7.【答案】D
【解析】解:如图所示:公园的坐标是:(100,?200). 故选:D.
根据题意画出坐标系,进而确定公园的坐标.
此题主要考查了坐标确定位置,正确理解题意是解题关键.
8.【答案】B
第9页,共18页
【解析】解:当??=1时,方程变形为3+2??=15,解得??=6; 当??=3时,方程变形为9+2??=15,解得??=3;
??=1??=3
∴二元一次方程3??+2??=15的正整数解的对数是2对:{和{.
??=6??=3故选:B.
将??=1,2,…,分别代入3??+2??=15,求出方程的正整数解的对数是多少即可. 此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x与y必须为正整数.
9.【答案】B
【解析】解:如图,根据题意可知: ????//????,
分别过点C,D作AB的平行线CG,DH, 所以????//????//????//????, 则∠??+∠??????=180°, ∠??????+∠??????=180°, ∠??????+∠??????=180°,
∴∠??+∠??????+∠??????+∠??????+∠??????+∠??????=180°×3=540°, ∴∠??+∠??????+∠??????+∠??=540°. 故选:B.
分别过点C,D作AB的平行线CG,DH,进而利用同旁内角互补可得∠??+∠??????+∠??????+∠??的大小.
考查了平行线的性质,解题的关键是作辅助线,利用平行线的性质计算角的大小.
10.【答案】B
【解析】解:∵小路的左边线向右平移2m就是它的右边线, ∴路的宽度是2m,
∴这块草地的绿地面积是(???2)??平方米, 故选:B.
根据平移,可得路的宽度,根据矩形的面积,可得答案.
第10页,共18页