好文档 - 专业文书写作范文服务资料分享网站

中考数学总复习全部导学案教师版

天下 分享 时间: 加入收藏 我要投稿 点赞

思考与收获 第6课时 一元一次方程及二元一次方程(组) 【知识梳理】 1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程: 等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组. 4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】 方程思想和转化思想 【例题精讲】 例1. (1)解方程解: 例2.已知x??2是关于x的方程2(x?m)?8x?4m的解,求m的值. 方法1 方法2 例3.下列方程组中,是二元一次方程组的是( ) ?3x?2y?152x?115?2x??1.(2)解二元一次方程组 ?7x?2y?27 ?56 ?x?y?8?x?1115??????xy?15x?y??2???x?y?3?xx?y2y6??3?0x 的代数式表示y,则y=______________. 例4.在 中,用例5.已知a、b、c满足??x?y?5A. B. C. D. ?x2?y?10??a?2b?5c?0,则a:b:c= . a?2b?c?0?例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表月份 用电量 交电费总数 示)? . 3月 80度 25元 ②右表是这户居民 3 月、4 月的用电情况和交费情4月 45度 10元 况:根据右表数据,求电厂规定A度为 . 1 0【当堂检测】 01.方程x?5?2的解是___ ___. 0 2.一种书包经两次降价10%,现在售价a元,则原售价为_______元. 3.若关于x的方程1x?5?k的解是x??3,则k?_________. 3?x?2?x?3?x?14.若?y??1,?y?2,?y?c都是方程ax+by+2=0的解,则c=____. ???5.解下列方程(组):

(1)3x?2??5(x?2); (2)0.7x?1.37?1.5x?0.23;

?2x?5y?212x?11?4x(3)? ; (4)??1;

35x?3y?8?

6.当x??2时,代数式x2?bx?2的值是12,求当x?2时,这个代数式的值.

7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?

?mx?ny??8(1)8.甲、乙两人同时解方程组?由于甲看错了方程①中的m,得到的解是

?mx?ny?5 (2)?x?4?x?2,乙看错了方程中②的n,得到的解是?,试求正确m,n的值. ??y?5?y?2

第7课时 一元二次方程

【知识梳理】

1. 一元二次方程的概念及一般形式:ax2+bx+c=0 (a≠0)

2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b2-4ac≥0时,一元二次方程ax2+bx+c=0 (a≠0)的两根为 4.根的判别式: 当b2-4ac>0时,方程有 实数根.

?b?b2?4acx?2a当b2-4ac=0时, 方程有 实数根. 当b2-4ac<0时,方程 实数根.

【思想方法】

1. 常用解题方法——换元法

2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:

(1) (x-15)2-225=0; (2) 3x2-4x-1=0(用公式法);

(3) 4x2-8x+1=0(用配方法); (4)x2+22x=0

(m?1)x2?7mx?m2?3m?4?0有一个根为零,求m的值. 例2 .已知一元二次方程

例3.用22cm长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?

例4.已知关于x的方程x2―(2k+1)x+4(k-0.5)=0

(1) 求证:不论k取什么实数值,这个方程总有实数根;

(2) 若等腰三角形ABC的一边长为a=4,另两边的长b.c恰好是这个方程的两个根,求△ABC的周长.

【当堂检测】 一、填空

1.下列是关于x的一元二次方程的有_______ ①1?3x2?2?0 ②x2?1?0 ③(2x?1)2?(x?1)(4x?3) ④k2x2?5x?6?0 ⑤

x132x2?x??0 ⑥3x2?2?2x?0 422.一元二次方程3x2=2x的解是 .

3.一元二次方程(m-2)x2+3x+m2-4=0有一解为0,则m的值是 . 4.已知m是方程x2-x-2=0的一个根,那么代数式m2-m = .

5.一元二次方程ax2+bx+c=0有一根-2,则4a?c的值为 .

6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根, 则k的取值范围是__________.

7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 . 二、选择题:

8.对于任意的实数x,代数式x2-5x+10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m2-n2)(m2+n2)=-6,则m2+n2的值是( ) A.3 B.3或-2 C.2或-3 D. 2

10.下列关于x的一元二次方程中,有两个不相等的实数根的方程是( ) (A)x2+4=0 (B)4x2-4x+1=0(C)x2+x+3=0(D)x2+2x-1=0 11.下面是李刚同学在测验中解答的填空题,其中答对的是( ) A.若x2=4,则x=2 B.方程x(2x-1)=2x-1的解为x=1

C.方程x2+2x+2=0实数根为0个 D.方程x2-2x-1=0有两个相等的实数根

12.若等腰三角形底边长为8,腰长是方程x2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21 三、解下方程:

(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x2-4x-4=0

b

中考数学总复习全部导学案教师版

思考与收获第6课时一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件.3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量
推荐度:
点击下载文档文档为doc格式
8qe659ma1344s0w0d4ij47hq70zb09011v1
领取福利

微信扫码领取福利

微信扫码分享