基于高频数据的非平稳GARCH(1,1)模型的拟极大指数
似然估计
吴思鑫[1];冯牧[2];张虎[3];陈敏[1];
【期刊名称】《中国科学》 【年(卷),期】2024(048)003
【摘要】波动率的统计分析一直是金融市场量化分析的重要问题.收益率替代模型能将日内的收益率高频数据嵌入到日间的收益和波动率的模型中,因此可以通过构造合适的收益率替代来改进收益和波动率模型中的参数估计的精度.提高估计精度的直接作用就是改进VaR的预报精度,提高风险管理水平.本文针对非平稳GARCH(1,1)模型,构建新的收益率替代模型—基于高频数据的非平稳GARCH模型.不同于传统的Gauss拟极大似然估计(QMLE),本文对收益率替代模型提出拟极大指数似然估计(QMELE).在残差的二阶矩有限的情形下,建立QMELE的强一致性和渐近正态性.数值模拟的结果显示,基于高频数据的估计QMELE具有更小的均方误差.同时通过实际的金融数据说明,包含更多信息的日内高频数据下的收益率替代模型的估计所对应的VaR估计是有效的. 【总页数】14页(P.443-456)
【关键词】高频数据;非平稳;GARCH模型;拟极大指数似然估计;VaR 【作者】吴思鑫[1];冯牧[2];张虎[3];陈敏[1];
【作者单位】[1]中国科学院数学与系统科学研究院,北京100190;[2]中国科学技术大学管理学院,合肥230026;[3]中南财经政法大学统计与数学学院,武汉430073;[1]中国科学院数学与系统科学研究院,北京100190; 【正文语种】英文
基于高频数据的非平稳GARCH(1,1)模型的拟极大指数似然估计
基于高频数据的非平稳GARCH(1,1)模型的拟极大指数似然估计吴思鑫[1];冯牧[2];张虎[3];陈敏[1];【期刊名称】《中国科学》【年(卷),期】2024(048)003【摘要】波动率的统计分析一直是金融市场量化分析的重要问题.收益率替代模型能将日内的收益率高频数据嵌入到日间的收益和波动率的模型中,因此可以
推荐度:
点击下载文档文档为doc格式