实用标准文档
一、人体重变化
某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克? 天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、 问题分析
人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、 模型假设
1、 以脂肪形式贮存的热量100%有效
2、 当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、 假设体重的变化是一个连续函数 4、 初始体重为W0
三、 模型建立
假设在△t时间内:
体重的变化量为W(t+△t)-W(t);
身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量;
转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt;
四、 模型求解
d(5429-69W)/(5429-69W)=-69dt/41686
W(0)=W0 解得:
(-69t/41686)
5429-69W=(5429-69W0)e即:
(-69t/41686)
W(t)=5429/69-(5429-69W0)/5429e
当t趋于无穷时,w=81;
二、投资策略模型
一、 问题重述
一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本aij(购入价减去折旧加上运营和维修成本)。以千元计数aij的由下面的表给出: aij 年2 年3 年4 年5 年6 文案大全
实用标准文档
年1 年2 年3 年4 年5 4 6 5 9 7 6 12 11 8 8 20 16 13 11 10 请寻找什么时间买进和卖出汽车的最便宜的策略。
二、 问题分析
本问题是寻找成本最低的投资策略,可视为寻找最短路径问题。因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本的投资策略。
三、 条件假设
除购入价折旧以及运营和维护成本外无其他费用;
四、模型建立
二
5
11 7 三 6 4
16
6 13 8 四 一 9
12 8 11 20 五 10 六
运用Dijikstra算法
1 2 3 4 5 6 0 4 6 9 12 20 6 9 12 20 9 12 20 12 20 20 可发现,在第二次运算后,数据再无变化,可见最小路径已经出现
即在第一年买进200辆,在第三年全部卖出,第三年再买进200第六年全部卖出。
文案大全
实用标准文档
三、飞机与防空炮的最优策略
一、问题重述:
红方攻击蓝方一目标,红方有2架飞机,蓝方有四门防空炮,红方只要有一架飞机突破蓝方的防卫则红方胜。其中共有四个区域,红方可以其中任意一个接近目标,蓝方可以任意布置防空炮,但一门炮只能防守一个区域,其射中概率为1。那么双方各采取什么策略?
二、问题分析
该问题显然是红方与蓝方的博弈问题,因此可以用博弈论模型来分析本问题。 1、对策参与者为两方(红蓝两方)
2、红军有两种行动方案,即两架飞机一起行动、两架飞机分开行动。蓝军有三种防御
方案,即四个区域非别布置防空炮(记为1-1-1-1)、一个区域布置两架一个没有另外两个分别布置一个(记为2-1-1-0)、两个区域分别布置两架飞机另外两个没有(记为2-2-0-0)。显然是不需要在某个区域布置3个防空炮的。
三、问题假设:
(1) 红蓝双方均不知道对方的策略。
(2) 蓝方可以在一个区域内布置3,4门大炮,但是大炮数量大于飞机的数量,
而一门大炮已经可以击落一架飞机,因而这种方案不可取。
(3) 红方有两种方案,一是让两架飞机分别通过两个区域去攻击目标,另一
种是让两架飞机通过同一区域去攻击目标。
(4) 假设蓝方四门大炮以及红方的两架飞机均派上用场,且双方必须同时作
出决策。
四、模型建立
行动及其产生的结果 红方 蓝方 1-1-1-1 2-1-1 2-2-0-0 1.0 0.75 0.50 0.00 0.50 0.83 2架一起 两架分开 由此可得赢得矩阵蓝方为A,红方为B
A= 1 0 0.75 0.50 0.50 0.83
B= 0 0.25 0.5
1 0.5 0.17
文案大全