个人收集整理,勿做商业用途
TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;
CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。
根据以上计算,需要4个250AH/12V的电池,两个串联成一组,共两组。
3 太阳能电池方阵设计
(1)太阳能电池组件串联数Ns
将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。 计算方法如下:
Ns=UR/Uoc=(Uf+UD+Uc)/Uoc =(5+0.7+0)/36=1
式中:UR为太阳能电池方阵输出最小电压;
Uoc为太阳能电池组件的最佳工作电压; Uf为蓄电池浮充电压;
UD为二极管压降,一般取0.7V;
UC为其它因数引起的压降。
蓄电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数。
(2)太阳能电池组件并联数Np
在确定NP之前,我们先确定其相关量的计算方法。
①将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H。设地点为成都,则斜面日均辐射量为:10304。 H=10304×2.778/10000h=2.862
6 / 9
个人收集整理,勿做商业用途
式中:2.778/10000(h·m2/kJ)为将日辐射量换算为标准光强
(1000W/m2)下的平均日辐射时数的系数。 ②太阳能电池组件日发电量Qp
Qp=Ioc×H×Kop×Cz=5.0×2.862×0.885×0.8=10.13(AH) 式中:Ioc为太阳能电池组件最佳工作电流;
Kop为斜面修正系数;
Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8。
③两组最长连续阴雨天之间的最短间隔天数NW=30,此数据为本设计之独特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:
Bcb=A×QL×NL=1.2×(3000/24)×5=750(AH) Qp=3000/24=125(AH) ④太阳能电池组件并联数Np的计算方法为:
Np=(Bcb+Nw×QL)/(Qp×Nw)=(750+30×125)/(10.13×30)=14.81
上式表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的
最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。
(3)太阳能电池方阵的功率计算
根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P: P=Po×Ns×Np=180×1×14=2520W 式中:Po为太阳能电池组件的额定功率。 所以,需要180W/24V电池板14块。
四 控制器的安装
目前,家用系统大部分使用12V、24V和48V的直流太阳能系统,计算出太阳能板的总电流。
公式如下:180W太阳能板14片/48V控制器=52.5A电流
那么,采用两个24V/30A太阳能充电控制器就可以满足了。
7 / 9
个人收集整理,勿做商业用途
注意事项:如超过1000W的系统,尽量采用双控制器,以便于检测发电状况和使用维护。控制器因为太阳能板在发电时候并不是始终处于最大电压和电流,所以在选控制器是可以按40%~50%的电流,就可以满足了。
五 逆变器的安装
逆变器是连接负载和电池的最后一个关键组件,采用纯正弦波逆变器不会对任何电器电机的使用寿命造成影响。 逆变器的计算公式如下:
使用电器的功率之和×1.25=要使用的逆变器容量
逆变器容量=(100+150+300+200+1200)×1.25=2437.5(W) 因此,需要一个24W/2500W输出220V/20HZ的逆变器。 六 综合上述计算该家用光伏发电系统方案及报价如下表: 序号 产品名称 太阳能电池组1 件 太阳能充电控2 制器 3 太阳能逆变器 铅酸免维护蓄电4 池 描述 BSM180-72 180w/24v 单晶硅 单数单价位 量 (元) 块 14 2 2 总价(元) 1224 17136 400 3200 6000 4000 34336 800 6400 CM3048(30A/24V)LED显示 台 HX4K 24/48/96VDC 3000 台 支架 、电线等 块 4 1500 5 其他 6 总计 七 方案分析及讨论
从整套家用独立光伏发电系统的大概成本看要3.5万元,成本较高按一般农村家庭来计算要十年后才能免费用电。 对于成本较高的原因分析为以下几点:
1. 系统设计还不够科学严谨。我对各部件产品的市场价格及性能不够了解,所以在产品采购上的规划还不是最优化的,从而导致成本较高。
2. 从地点选择上看:我设计地点在成都,而成都的日照强度在全国看来是偏低的为了理论上满足用户需求必然要增加成本特别是太阳能电池板上的投入。 对于降低成本我提出以下两点假设:
8 / 9
个人收集整理,勿做商业用途
1. 为了降低太阳能电池板的投入成本,在风力资源较好的地区可以设计成光-风发电系统,通过风力发电来解决一部分光伏发电功率不够的问题,不过风力发电存在不稳定的特点。
2. 采用光伏发电系统与市电并网供电方式,通过控制电路形成并网供电。 3.
9 / 9