好文档 - 专业文书写作范文服务资料分享网站

2024届山东省潍坊高密市高三模拟数学试题一(解析版)

天下 分享 时间: 加入收藏 我要投稿 点赞

线国家进出口情况统计图,下列描述正确的是( ).

A.这五年,2013年出口额最少 B.这五年,出口总额比进口总额多 C.这五年,出口增速前四年逐年下降 D.这五年,2017年进口增速最快 【答案】ABD

【解析】选项A :观察五个灰色的条形图的高低即可判断;选项B:观察五组条形图,对比每组灰色条形图与黑色条形图的高低及高低悬殊程度即可判断;选项C :从图中知,红色的折线图是先上升后下降即可判断;选项D :观察这五年所对的蓝色折线图的高低即可判断. 【详解】

解:选项A :观察五个灰色的条形图,可得2013年所对的灰色条形图高度最低,所以这五年, 2013年出口额最少.故A正确;

选项B:观察五组条形图可得2013年出口额比进口额稍低但2014年-2017年都是出口额高于进口额并且2015年和2016年都是出口额明显高于进口额,故这五年,出口总额比进口总额多.故B正确:

选项C :从图中可知,红色的折线图是先上升后下降即2013年到2014年出口增速是上升的.故C错误;

选项D :从图中可知,蓝色的折线图2017年是最高的,即2017年进口增速最快,故D正确. 故选: ABD 【点睛】

本题主要考查统计条形图和折线图的应用:解题的关键 是从条形图看出口金额和进口金额从折线图看出口增速和进口增速;属于基础题. 10.关于函数f(x)?1?2?1???下列结论正确的是( ) x?ex?1?第 6 页 共 22 页

A.图像关于y轴对称 C.在???,0?上单调递增 【答案】ACD

B.图像关于原点对称 D.f?x?恒大于0

【解析】利用函数的奇偶性,单调性直接求解. 【详解】 解: 函数f(x)?1?2?1???定义域为(??,0)(0,??), xx?e?1?1?2?1ex?1①因为f(x)??1?x ???x?e?1?xex?11e?x?111?ex1ex?1f(?x)????????f(x),

?xe?x?1x1?exxex?1故函数f?x?为偶函数,所以A正确;

②由①知,函数f?x?为偶函数,所以B不正确; ③当x?0时,y?11?0,且y?在?0,???单调递减, xx当x?0时,y?1?且y?1?而f(x)?2?0, xe?12在?0,???单调递减, ex?11?2?1???,故f?x?在?0,???单调递调减, xx?e?1?又由f?x?为偶函数,故f?x?在???,0?上单调递增,所以C正确; ④由①知, f(x)?1?2?11??0,ex?1?0,ex?1?0, ,当,x?0??xx?e?1?x故此时f?x??0.故D正确. 故选:ACD 【点睛】

本题考查函数的奇偶性、单调性和恒大于0,属于函数基本性质的综合题,是中档题。 11.设函数f?x??sin??x?下列结论正确的是( )

A.在?0,??上存在x1,x2,满足f?x1??f?x2??2

第 7 页 共 22 页

????,已知f?x?在?0,??有且仅有3个零点,?(??0)

6?B.f?x?在?0,??有且仅有1个最小值点 C.f?x?在?0,?????单调递增 2?D.?的取值范围是?,?

?66?【答案】AB

【解析】由题意根据f(x)在区间?0,??有3个零点画出大致图象,可得区间长度?介于3周期[T?|OA|,T?|OA|),再用?表示周期,得?的范围.

2?1319?【详解】

解:画出函数f(x)?sin(?x??6)大致图象如图所示,

?1当x?0时y?sin(?)??;

62又??0,所以x?0时f(x)在y轴右侧第一个最大值区间内单调递增,

函数在[0,?]仅有3个零点时,则?的位置在C~D之间(包括C,不包括D), 令f(x)?sin(?x?)?0,则?x??k?得,x?(?k?),(k?z), 66?6??1?y轴右侧第一个点横坐标为?,周期T?2?,

?6???3?T???T, 6?6?21319?2??32???????,所以D错误; 即,解得6??6?2?66所以

在区间[0,?]上,函数f(x)达到最大值和最小值, 所以存在x1,x2,满足f(x1)?f(x2)?2,所以A正确; 由大致图象得,f(x)在(0,?)内有且只有1个最小值,B正确; 因为?最小值为

13??11?11????,?(?,), ,所以0?x?时,???x??2666121222所以x?(0,?2)时,函数f(x)不单调递增,所以C错误.

故选:AB.

第 8 页 共 22 页

【点睛】

本题考查了三角函数图象及周期的计算问题,由题意求出?的范围,再判断命题的真假性,是解题的关键.

12.已知正方体ABCD?A1B1C1D1,过对角线BD1作平面?交棱AA1于点E,交棱CC1于点F,下列正确的是( )

A.平面?分正方体所得两部分的体积相等; B.四边形BFD1E一定是平行四边形; C.平面?与平面DBB1不可能垂直; D.四边形BFD1E的面积有最大值. 【答案】ABD

【解析】由正方体的对称性可知,平面?分正方体所得两部分的体积相等;依题意可证

BFD1E,D1FBE,故四边形BFD1E一定是平行四边形;当E,F为棱中点时,EF?平面BB1D,

平面BFD1E?平面BB1D;当F与A重合,当E与C1重合时BFD1E的面积有最大值. 【详解】

解: 对于A:由正方体的对称性可知,平面?分正方体所得两部分的体积相等,故A正确; 对于B:因为平面ABB1A1平面BFD1ECC1D1D,平面BFD1ED1E.

平面ABB1A1?BF,

平面CC1D1D?D1E,?BF同理可证:D1FBE,故四边形BFD1E一定是平行四边形,故B正确;

对于C:当E,F为棱中点时,EF?平面BB1D,又因为EF?平面BFD1E, 所以平面BFD1E?平面BB1D,故C不正确;

对于D:当F与A重合,当E与C1重合时BFD1E的面积有最大值,故D正确. 故选:ABD

第 9 页 共 22 页

【点睛】

本题考查正方体的截面的性质, 解题关键是由截面表示出相应的量与相应的关系,考查空间想象力.

三、填空题

13.已知双曲线C过点(3,2)且渐近线为y??__________.

3x,则双曲线C的标准方程为3x2【答案】?y2?1

3【解析】根据双曲线的渐近线方程可设双曲线方程为x?3y?????0?,将点(3,2)22代入方程求出?,即可得出双曲线方程为. 【详解】

解:根据题意,双曲线的渐近线方程为y??可化为: x?3y?0,

则可设双曲线方程为x?3y?????0?,

223x, 3将点(3,2)代入x?3y?????0?,

22得32?32?????0?,即??3,

2x2故双曲线方程为: ?y2?1.

3x2故答案为: ?y2?1

3【点睛】

本题考查双曲线的标准方程、双曲线的几何性质等基础知识考查运算求解能力,考查数

第 10 页 共 22 页

2024届山东省潍坊高密市高三模拟数学试题一(解析版)

线国家进出口情况统计图,下列描述正确的是().A.这五年,2013年出口额最少B.这五年,出口总额比进口总额多C.这五年,出口增速前四年逐年下降D.这五年,2017年进口增速最快【答案】ABD【解析】选项A:观察五个灰色的条形图的高低即可判断;选项B:观察五组条形图,对比每组灰色条形图与黑色条形图的高低及高低悬殊程度即可判断;
推荐度:
点击下载文档文档为doc格式
8pfbh8vwt1797950lpza3sk4u09qm100fgv
领取福利

微信扫码领取福利

微信扫码分享