好文档 - 专业文书写作范文服务资料分享网站

新北师大版八下数学第一章三角形的证明教案

天下 分享 时间: 加入收藏 我要投稿 点赞

第一章 三角形的证明 【单元分析】 本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了 8 条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。 运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。 在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础。 【单元目标】 1.知识与技能 (1)等腰三角形的性质和判定定理; (2)直角三角形的性质定理和判定定理; 2.过程与方法 (1) 会运用等腰三角形的性质和判定定理解决相关问题; (2) 直角三角形的性质定理和判定定理解决简单的实际问题; 3.情感态度与价值观 (1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数 学、用数学的意识与能力; (2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久 文化的思想感情。 【单元重点】 在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。 【单元难点】 明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。 【教学思路】 1.对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。 2.对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。 3.证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。 4.作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。 【单元课时安排】 课 题 课 时 1.1 等腰三角形 4课时 1.2 直角三角形 2课时 1.3 线段的垂直平分线 2课时 1.4 角平分线 2课时 回顾与思考 2课时 主备人 参加人员 课题 沙春红 沙春红 使用人 沙春红 备课时间 审核 使用时间 1.等腰三角形(一) 课型 新授课 理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理; 知识与技能 在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理; 经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明教学目标 过程与方法 是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力; 鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平; 启发引导学生体会探索结论和证明结论,及合情推理与演绎的相情感态度与价值观 互依赖和相互补充的辩证关系; 培养学生合作交流的能力,以及独立思考的良好学习习惯. 教学重点 教学难点 教法、学法分析 媒体使用和选择 第一环节:回顾旧知 导出公理 活动内容:提请学生回忆并整理已经学过的8条基本事实中的5条: 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 2.两条平行线被第三条直线所截,同位角相等; 教学过程 3.两边夹角对应相等的两个三角形全等(SAS); 4.两角及其夹边对应相等的两个三角形全等(ASA); 5.三边对应相等的两个三角形全等(SSS); 在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进 探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法; 明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。 引导启发式 通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的. 二次备课 行证明;2.回忆全等三角形的性质。 活动目的:经过一个暑假,学生难免有所遗忘,因此,在第一课时,回顾有关内容,既是对前面学习内容的一个简单梳理,也为后续有关证明做了知识准备;证明这个推论,可以让学生熟悉证明的基本要求和步骤,为后面的其他证明做好准备。 活动效果与注意事项:由于有了前面的铺垫,学生一般都能得到该推论的证明思路,但由于有了一个暑假的遗忘,可能部分学生的表述未必严谨、规范,教学中注意提请学生分析条件和结论,画出简图,写出已知和求证,并规范地写出证明过程。具体证明如下: 已知:如图,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF. 证明:∵∠A=∠D,∠B=∠E(已知), BCEFAD又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°), ∴∠C=180°-(∠A+∠B), ∠F=180°-(∠D+∠E), ∴∠C=∠F(等量代换)。 又BC=EF(已知), ∴△ABC≌△DEF(ASA)。 第二环节:折纸活动 探索新知 活动内容:在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。具体操作中,可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足。 BAAA→ DC→ DBCB(C)D活动目的:通过折纸活动过程,获得有关命题的证明思路,并通过进一步的整理,再次感受证明是探索的自然延伸和发展,熟悉证明的基本步骤和书写格式。 第三环节:明晰结论和证明过程 活动内容:在学生小组合作的基础上,教师通过分析、提问,和学生一起完成以上两个个性质定理的证明,注意最好让两至三个学生板演证明,其余学生挑选其一证明.其后,教师通过课件汇总各小组的结果以及具体证明方法,给学生明晰证明过程。 (1)等腰三角形的两个底角相等; (2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合 活动目的:和学生一起完成性质定理的证明,可以让学生自主经历命题的证明过程;明晰证明过程,意图给学生明晰一定的规范,起到一种引领作用;活动2,则是前面命题的直接推论,力图让学生形成拓广命题的意识,同时也是一个很好的巩固练习。 第四环节:随堂练习 巩固新知 活动内容:学生自主完成P4第2题:如图(图略),在△ABD中,C是BD上的一点,且AC⊥BD,AC=BC=CD,(1)求证:△ABD是等腰三角形;(2)求∠BAD的度数。 活动目的:巩固全等三角形判定公理的应用,复习等腰三角形“等边对等角”的用法。 第五环节:课堂小结 活动内容:让学生畅谈收获,包括具体结论以及其中的思想方法等。 活动目的:形成及时总结语反思的意识与习惯,提高学生能力。 第六环节:布置作业 1. 等腰三角形(一) 板书设计 教学反思 主备人 参加人员 课题 沙春红 沙春红 使用人 沙春红 备课时间 审核 使用时间 1. 等腰三角形(二) 知识与技能 课型 新授课 探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性 ①经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力; 教学目标 过程与方法 ②在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性; ③在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉; ①鼓励学生积极参与数学活动,激发学生的好奇心和求知欲. 情感态度与价值观 ②体验数学活动中的探索与创造,感受数学的严谨性. 教学重点 教学难点 教法、学法分析 媒体使用和选择 第一环节:提出问题,引入新课 活动内容:在回忆上节课等腰三角形性质的基础上,提出问题: 在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗? 活动目的:回顾性质,既为后续研究判定提供了基础;同时,直接提出新的问题,过渡自然,引入本课研究内容,而新的问题是原有性质的一个自然拓广,教学过程 有助于提高学生提出问题的能力。 第二环节:自主探究 活动内容:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。 活动目的:让学生再次经历“探索——发现——猜想——证明”的过程,进 经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论. 用综合法证明有关三角形和等腰三角形的一些结论. 引导启发式 通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的. 二次备课

新北师大版八下数学第一章三角形的证明教案

第一章三角形的证明【单元分析】本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,
推荐度:
点击下载文档文档为doc格式
8p7gl6nabe9s4tl8lgrm6o2vt5lzqa00cu1
领取福利

微信扫码领取福利

微信扫码分享