实验一 金属材料拉伸实验
拉伸实验是测定材料在常温静载下机械性能的最基本和重要的实验之一。这不仅因为
拉伸实验简便易行,便于分析,且测试技术较为成熟。更重要的是,工程设计中所选用的材料的强度、塑形和弹性模量等机械指标,大多数是以拉伸实验为主要依据。
1.1实验目的
1、验证胡可定律,测定低碳钢的E。
2、测定低碳钢拉伸时的强度性能指标:屈服应力Rel和抗拉强度Rm。 3、测定低碳钢拉伸时的塑性性能指标:伸长率A和断面收缩率Z 4、测定灰铸铁拉伸时的强度性能指标:抗拉强度Rm 5、绘制低碳钢和灰铸铁拉伸图,比较低碳钢与灰铸铁在拉伸树的力学性能和破坏形式。 1.2实验设备和仪器 万能试验机、游标卡尺,引伸仪 1.3实验试样 本试验采用经机加工的直径d =10 mm的圆形截面比例试样,其是根据国家试验规范的规定进行加工的。它有夹持、过渡和平行三部分组成(见图2-1),它的夹持部分稍大,其形状和尺寸应根据试样大小、材料特性、试验目的以及试验机夹具的形状和结构设计,但必须保证轴向的拉伸力。其夹持部分的长度至少应为楔形夹具长度的3/4(试验机配有各种夹头,对于圆形试样一般采用楔形夹板夹头,夹板表面制成凸纹,以便夹牢试样)。机加工带头试样的过渡部分是圆角,与平行部分光滑连接,以保证试样破坏时断口在平行部分。平行部分的长度Lc按现行国家标准中的规定取Lo+d ,Lo是试样中部测量变形的长度,称为原始标距。 1.4实验原理 按我国目前执行的国家GB/T 228—2002标准——《金属材料 室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。 将试样安装在试验机的夹头中,固定引伸仪,然后开动试验机,使试样受到缓慢增加的拉
力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验
图2-1 机加工的圆截面拉伸试样
机的自动绘图装置绘出材料的拉伸图(图2-2所示)。
应当指出,试验机自动绘图装置绘出的拉伸变形ΔL主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。
(a)低碳钢拉伸曲线图 (b)铸铁拉伸曲线图 图2-2 由试验机绘图装置绘出的拉伸曲线图 1.4.1 低碳钢(典型的塑性材料) 当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过FP后拉伸曲线将由直变曲。保持直线关系的最大拉力就是材料比例极限的力值FP 。 在FP的上方附近有一点是Fc,若拉力小于Fc而卸载时,卸载后试样立刻恢复原状,若拉力大于Fc后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而Fc是代表材料弹性极限的力值。 当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。低碳钢的屈服阶段常呈锯齿状,其上屈服点B′受变形速度及试样形式等因素的影响较大,而下屈服点B则比较稳定(因此工程上常以其下屈服点B所对应的力值FeL作为材料屈服时的力值)。确定屈服力值时,必须注意观察读数表盘上测力指针的转动情况,读取测力度盘指针首次回转前指示的最大力FeH(上屈服荷载)和不计初瞬时效应时屈服阶段中的最小力FeL(下屈服荷载)或首图2-3 低碳钢的冷作硬化 次停止转动指示的恒定力FeL(下屈服荷载),将其分别除以试样的原始横截面积(S0)便可得到上屈服强度ReH和下屈服强度ReL。即
ReH= FeH/S0 ReL = FeL/S0
屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形的能力,这种现象称为材料的强化。在强化阶段内,试样的变形主要是塑性变形,比弹性阶段内试样的变形大得多,在达到最大力Fm之前,试样标距范围内的变形是均匀的,拉伸曲线是一段平缓上升的曲线,这时可明显地看到整个试样的横向尺寸在缩小。此最大力Fm为材料的抗拉强度力值,由公式Rm=Fm/S0 即可得到材料的抗拉强度Rm。
如果在材料的强化阶段内卸载后再加载,直到试样拉断,则所得到的曲线如图2-3所示。卸载时曲线并不沿原拉伸曲线卸回,而是沿近乎平行于弹性阶段的直线卸回,这说明卸载前试样中除了有塑性变形外,还有一部分弹性变形;卸载后再继续加载,曲线几乎沿卸载路径变化,然后继续强化变形,就像没有卸载一样,这种现象称为材料的冷作硬化。显然,冷作硬化提高了材料的比例极限和屈服极限,但材料的塑性却相应降低。
当荷载达到最大力Fm后,示力指针由最大力Fm缓慢回转时,试样上某一部位开始产生局部伸长和颈缩,在颈缩发生部位,横截面面积急剧缩小,继续拉伸所需的力也迅速减小,拉伸曲线开始下降,直至试样断裂。此时通过测量试样断裂后的标距长度Lu和断口处最小直径du,计算断后最小截面积(Su),由计算公式
A?Lu?L0S?Su?100%Z?0?100%L0S0 、 即可得到试样的断后伸长率A和断面收缩率Z。 1.4.2 铸铁(典型的脆性材料) 脆性材料是指断后伸长率A<5% 的材料,其从开始承受拉力直至试样被拉断,变形都很小。而且,大多数脆性材料在拉伸时的应力-应变曲线上都没有明显的直线段,几乎没有塑性变形,也不会出现屈服和颈缩等现象(如图2-2b所示),只有断裂时的应力值——强度极限。 铸铁试样在承受拉力、变形极小时,就达到最大力Fm而突然发生断裂,其抗拉强度也远小于低碳钢的抗拉强度。同样,由公式Rm=Fm/S0 即可得到其抗拉强度Rm,而由公式A?Lu?L0L0?100% 则可求得其断后伸长率A。 1.5进行实验 1.5.1 低碳钢拉伸实验 本小组在万能试验机上进行了低碳钢的拉伸实验,得到了如下图所示的拉力图 由图中我们可以看出实验结果与实验原理吻合的相当好,有明显的弹性阶段、屈服阶段、强化阶段和颈缩阶段。其次,在强化过程中,有一条向下的竖线,那时我们在卸去载荷后所得到的曲线,验证了材料的冷作硬化。 图2-5是低碳钢拉断后的断口形状我们可以清楚的看到断口的形状呈现杯锥状 若是单纯的用最大拉应力强度理论来分析,则断口的形状应该比较平整:若是用最大剪应力来分析,则形状该是呈现45?斜面。这两种原理都不符合实验的结果。通过课后查阅资料得知,材料的破坏是多种因素共同作用的结果,可能是剪断也可能是拉断,这主要取决于破坏的方式和应力状态分布。一般认为,像我们实验用的材料和拉伸方式,最终试样的中心区域不是发生剪断而是脆性拉断,最外面的部分才沿具有最大剪应力的45?斜面上剪断,形成杯锥状的断口。 重要的实验结果:
屈服极限Rel(N/mm^2) 256 强度极限Rm(N/mm^2) 430 弹性模量E(N/mm^2) 2.06 21% 断面收缩率Z 断后延伸率A 51% 最大拉力Fm(kN) 33.739 在完成低碳钢的拉伸实验后我们又进行了灰铸铁的拉伸实验,绘制的拉力图: