IL2576HV-12D2T-P稳压器是单片集成电路,为降压型开关稳压器提供所有有源功能,能够以出色的线路和负载调节来驱动3A负载。这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。 这些稳压器需要最少的外部组件,易于使用,并包括故障保护和固定频率振荡器。
IL2576HV-12D2T-P高压三端稳压器可为流行的三端线性稳压器提供高效替代。它大大减小了散热器的尺寸,并且在某些情况下不需要散热器。几个不同的制造商都提供了针对IL2576HV/LM2576HV系列使用而优化的标准系列电感器。此功能极大地简化了开关电源的设计。其他功能包括在规定的输入电压和输出负载条件下,输出电压的容差为±4%,在振荡器频率上的容差为±10%。包括外部关机功能,待机电流典型值为50 μA。输出开关包括逐周期限流以及热关断功能,可在故障情况下提供全面保护。
IL2576HV LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576HVR-12 LM2576HVT
这些稳压器需要最少的外部组件,易于使用,并具有故1 Features
障保护和固定频率振荡器。 ? LMR33630 36V,3A,400kHz同步转换器
? 3.3V,5V,12V,15V和可调输出版本
LM2576系列可为流行的三端线性稳压器提供高效替? 可调版本输出电压范围:1.23 V至37 V(对于HV
代。 它大大减小了散热器的尺寸,在某些情况下不需版本为57 V)在整个线路和负载条件下最大±4%
要散热器。 ? 指定的3A输出电流
? 宽输入电压范围:40 V,最高为HV 60 V
几个不同的制造商可提供针对LM2576使用而优化的? 仅需四个外部组件
标准系列电感器。 此功能极大地简化了开关电源的设? 52kHz固定频率内部振荡器
计。. ? TTL关机功能,低功耗待机模式
? 高效率 其他功能包括在规定的输入电压和输出负载条件下,输? 使用现成的标准电感器 出电压的容差为±4%,振荡器频率的容差为±10%。 ? 热关断和限流保护 包括外部关机功能,具有50μA(典型值)的待机电? 使用WEBENCH工具创建自定义设计 流。 输出开关包括逐周期电流限制,以及热关断功 能,可在故障情况下提供全面保护。 2 Applications
LMR33630具有许多其他功能,可降低BOM成本,提? 马达驱动
高效率并将解决方案尺寸减小85%。 请参阅设备比较? 商家网络和服务器PSU
表以比较规格。 使用LMR33630开始WEBENCH设
? 家电类
计。
? 测试测量设备
(1) Device Information 3 Description PART NUMBER PACKAGE BODY SIZE (NOM) LM2576HVR-12 LM2576HVSX-12 LM2576HVS-ADJ LM2576 TO-220 (5) 10.16 mm × 8.51 mm LM2576HVR-12 LM2576HVT稳压器是单片集成电LM2576HV DDPAK/TO-263 (5) 10.16 mm × 8.42 mm 路,为降压型开关稳压器提供所有有源功能,能够以出
(1) For all available packages, see the orderable addendum at the
色的线路和负载调节来驱动3A负载。 这些设备提供end of the data sheet. 3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。
Fixed Output Voltage Version Typical Application Diagram
Table of Contents
1 Features .................................................................. 2 Applications ........................................................... 3 Description ............................................................. 4 Revision History.....................................................
1 1 1 2
8
7.3 Feature Description................................................. 12 7.4 Device Functional Modes........................................ 14
Application and Implementation ........................ 16
5 Pin Configuration and Functions ......................... 3 6 Specifications......................................................... 4
8.1 Application Information............................................ 16 8.2 Typical Applications ................................................ 20
6.1 Absolute Maximum Ratings ..................................... 4 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
4 4 4 5 5 5 6 6 6 8
9 Power Supply Recommendations 10 Layout
25 26
ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics: 3.3 V ................................ Electrical Characteristics: 5 V ................................... Electrical Characteristics: 12 V ................................. Electrical Characteristics: 15 V .................................
Electrical Characteristics: Adjustable Output
Voltage .......................................................................
6.10 Electrical Characteristics: All Output Voltage Versions ..................................................................... 6.11 Typical Characteristics ............................................
10.1 10.2 10.3 10.4 11.1 11.2 11.3 11.4 11.5 11.6 11.7
Layout Guidelines ................................................. 26 Layout Example .................................................... 27 Grounding ............................................................. 27 Heat Sink and Thermal Considerations ................ 27
11 Device and Documentation Support 29
Device Support .................................................... 29 Documentation Support ........................................ 30 Related Links ........................................................ 30 Support Resources ............................................... 30 Receiving Notification of Documentation Updates 30 Trademarks ........................................................... 30 Electrostatic Discharge Caution............................ 30
7 Detailed Description ............................................ 12 7.1 Overview ................................................................. 12 7.2 Functional Block Diagram ....................................... 12
11.8 Glossary ................................................................ 31
12 Mechanical, Packaging, and Orderable
Information ........................................................... 31
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision D (May 2016) to Revision E
Page
1 Page
? Added information about the LMR33630 ...............................................................................................................................
Changes from Revision C (April 2013) to Revision D
?
?
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section. ................................................................................................. 1 Moved the thermal resistance data from the Electrical Characteristics: All Output Voltage Versions table to the
Thermal Information table ...................................................................................................................................................... 4
Page
Changes from Revision B (April 2013) to Revision C
?3 Changed layout of National Data Sheet to TI format ..............................................................................................................
5 Pin Configuration and Functions
KC Package 5-Pin TO-220 Top View
KTT Package 5-PIN DDPAK/TO-263
Top View
DDPAK/TO-263 (S) Package 5-Lead Surface-Mount Package
Top View
NO. PIN I/O(1) Pin Functions DESCRIPTION Supply input pin to collector pin of high-side transistor. Connect to power supply and input bypass capacitors CIN. Path from VIN pin to high-frequency bypass CIN and GND must be as NAME 1 2 V IN I O OUTPUT GROUND FEEDBACK short as possible. Emitter pin of the power transistor. This is a switching node. Attach this pin to an inductor and the cathode of the external diode. Ground pin. Path to CIN must be as short as possible. Feedback sense input pin. Connect to the midpoint of feedback divider to set VOUT for ADJ version or connect this pin directly to the output capacitor for a fixed output version. Enable input to the voltage regulator. High = OFF and low = ON. Connect to GND to enable the voltage regulator. Do not leave this pin float. Connected to GND. Attached to heatsink for thermal relief for TO-220 package or put a copper plane connected to this pin as a thermal relief for DDPAK package. 3 4 — I 5 ON/OFF I — (1) I = INPUT, O = OUTPUT — TAB
6 Specifications
6.1 Absolute Maximum Ratings
over the recommended operating junction temperature range of -40°C to 125°C (unless otherwise noted)(1)(2) LM2576 LM2576HV MIN MAX 45 63 UNIT V V V Maximum supply voltage ON /OFF pin input voltage (Steady-state) ?0.3V ≤ V ≤ +VIN ?1 Output voltage to ground Power dissipation
Maximum junction temperature, TJ Storage temperature, Tstg Internally Limited °C °C ?65 150 150 (1)超出绝对最大额定值列出的应力可能会导致设备永久损坏。 这些仅是额定应力,并不意味着设备在这些或任何其他条件下(在“建议的工
作条件”中未指明)下的功能运行。 长时间处于绝对最大额定条件下可能会影响设备的可靠性。
6.2 ESD Ratings V (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) VALUE ±2000 Electrostatic discharge UNIT V (1)JEDEC文件JEP155指出500-V HBM允许通过标准ESD控制过程进行安全制造。
6.3 Recommended Operating Conditions
over the recommended operating junction temperature range of -40°C to 125°C (unless otherwise noted) MAX MIN LM2576, LM2576HV ?40 125 Temperature LM2576 40 Supply voltage 60 LM2576HV
6.4 Thermal Information LM2576, LM2576HV (1)(2)(3)THERMAL METRIC KTT (TO-263) KC (TO-220) 5 PINS 5 PINS RθJA Junction-to-ambient thermal resistance 42.6 32.4 RθJC(top) Junction-to-case (top) thermal resistance 43.3 41.2 RθJB Junction-to-board thermal resistance 22.4 17.6 ψJT Junction-to-top characterization parameter 10.7 7.8 ψJB Junction-to-board characterization parameter 21.3 17 RθJC(bot) Junction-to-case (bottom) thermal resistance 0.4 0.4 UNIT °C V UNIT °C/W °C/W °C/W °C/W °C/W °C/W (1)有关传统和新的热量指标的更多信息,请参见《半导体和IC封装热量指标》应用报告SPRA953和《使用新的热量指标》应用报告SBVA025。
(2)封装热阻根据JESD 51-7计算 (3)在4层JEDEC板上模拟热阻。
6.5 Electrical Characteristics: 3.3 V
Specifications are for TJ = 25°C (unless otherwise noted). TEST CONDITIONS SYSTEM PARAMETERS TEST CIRCUIT Figure 26 and Figure 32(1) Output Voltage PARAMETER MIN TYP MAX UNIT 3.234 3.3 3.366 VIN = 12 V, ILOAD = 0.5 A Circuit of Figure 26 and Figure 32 6 V ≤ VIN ≤ 40 V, 0.5 A ≤ ILOAD ≤ 3 A Figure 32 6 V ≤ VIN ≤ 60 V, 0.5 A ≤ ILOAD ≤ 3 A Figure 32 VIN = 12 V, ILOAD = 3 A Circuit of Figure 26 and Circuit of Figure 26 and V Output Voltage: LM2576 TJ = 25°C Applies over full operating 3.168 3.135 3.3 3.432 3.465 V V OUT Output Voltage: LM2576HV temperature range TJ = 25°C Applies over full operating 3.168 3.135 3.3 3.45 3.482 V η Efficiency temperature range 75% (1)外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。 如图26和图32所示使用LM2576 / LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。
6.6 Electrical Characteristics: 5 V
Specifications are for TJ = 25°C for the Figure 26 and Figure 32 (unless otherwise noted). TEST CONDITIONS SYSTEM PARAMETERS TEST CIRCUIT Figure 26 and Figure 32(1) VIN = 12 V, ILOAD = 0.5 A VOUT Output Voltage Circuit of Figure 26 and Figure 32 VOUT PARAMETER MIN TYP MAX UNIT 4.9 4.8 5 5 5.1 5.2 5.25 V V Output Voltage LM2576 0.5 A ≤ ILOAD ≤ 3 A, 8 V ≤ VIN ≤ 40 V VOUT Circuit of Figure 26 and Figure 32 0.5 A ≤ ILOAD ≤ 3 A, 8 V ≤ VIN ≤ 60 V TJ = 25°C Applies over full operating temperature range TJ = 25°C Applies over full operating temperature range 4.75 4.8 5.225 Output Voltage LM2576HV Efficiency 5 4.75 5.275 V η Circuit of Figure 26 and Figure 32 VIN = 12 V, ILOAD = 3 A 77% (1)外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。 如图26和图32所示使用LM2576 / LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。
6.7 Electrical Characteristics: 12 V
Specifications are for TJ = 25°C (unless otherwise noted). TEST CONDITIONS SYSTEM PARAMETERS TEST CIRCUIT Figure 26 and Figure 32(1) VIN = 25 V, ILOAD = 0.5 A VOUT Output Voltage Circuit of Figure 26 and Figure 32 PARAMETER MIN TYP MAX UNIT 11.76 12 12.24 V V VOUT Output Voltage LM2576 0.5 A ≤ ILOAD ≤ 3 A, 15 V ≤ VIN ≤ 40 V Circuit of Figure 26 and Figure 32 and 0.5 A ≤ ILOAD ≤ 3 A, 15 V ≤ VIN ≤ 60 V TJ = 25°C Applies over full operating temperature range TJ = 25°C Applies over full operating temperature range 11.52 12 12.48 12.6 11.4 11.52 11.4 VOUT Output Voltage LM2576HV 12 88% 12.54 12.66 V η Efficiency Circuit of Figure 26 and Figure 32 VIN = 15 V, ILOAD = 3 A (1) 外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。 如图26和图32所示使用LM2576 /
LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。
6.8 Electrical Characteristics: 15 V
PARAMETER over operating free-air temperature range (unless otherwise noted). TEST CONDITIONS SYSTEM PARAMETERS TEST CIRCUIT Figure 26 and Figure 32(1) VIN = 25 V, ILOAD = 0.5 A VOUT Output Voltage Circuit of Figure 26 and Figure 32 VOUT MIN TYP MAX UNIT 14.7 14.4 15 15 15.3 15.6 15.75 V V Output Voltage LM2576 0.5 A ≤ ILOAD ≤ 3 A, 18 V ≤ VIN ≤ 40 V Circuit of Figure 26 and Figure 32 0.5 A ≤ ILOAD ≤ 3 A, 18 V ≤ VIN ≤ 60 V TJ = 25°C Applies over full operating temperature range TJ = 25°C Applies over full operating temperature range 14.25 14.4 15.68 VOUT Output Voltage LM2576HV Efficiency 15 14.25 15.83 V η Circuit of Figure 26 and Figure 32 VIN = 18 V, ILOAD = 3 A 88% (1)外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。 如图26和图32所示使用LM2576 / LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。
6.9 Electrical Characteristics: Adjustable Output Voltage
over operating free-air temperature range (unless otherwise noted). TEST CONDITIONS SYSTEM PARAMETERS TEST CIRCUIT Figure 26 and Figure 32(1) VIN = 12 V, ILOAD = 0.5 A VOUT Feedback voltage VOUT = 5 V, Circuit of Figure 26 and Figure 32 PARAMETER MIN TYP MAX UNIT 1.193 1.217 1.18 1.23 1.243 V VOUT Feedback Voltage LM2576 0.5 A ≤ ILOAD ≤ 3 A, 8 V ≤ VIN ≤ 40 V VOUT = 5 V, Circuit of VOUT Figure 26 and Figure 32 Feedback Voltage LM2576HV Efficiency 0.5 A ≤ ILOAD ≤ 3 A, 8 V ≤ VIN ≤ 60 V TJ = 25°C Applies over full operating temperature range TJ = 25°C Applies over full operating temperature range 1.23 1.267 1.28 V 1.193 1.18 1.23 1.273 1.286 V VOUT = 5 V, Circuit of η Figure 26 and Figure 32 VIN = 12 V, ILOAD = 3 A, VOUT = 5 V 77% (1) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.
When the LM2576/LM2576HV is used as shown in Figure 26 and Figure 32, system performance is as shown in Electrical Characteristics: All Output Voltage Versions.
6.10 Electrical Characteristics: All Output Voltage Versions
over operating free-air temperature range (unless otherwise noted) TEST CONDITIONS SYSTEM PARAMETERS TEST CIRCUIT Figure 26 and Figure 32(2) PARAMETER MIN TYP(1) MAX UNIT 100 Ib Feedback Bias Current VOUT = 5 V (Adjustable Version Only) TJ = 25°C Applies over full operating temperature range 50 nA 500 fO Oscillator Frequency(3) TJ = 25°C 47 42 52 58 63 kHz Applies over full operating temperature range (1) 除非另有说明,否则所有规定的限值均在室温(25°C)下进行。 所有室温限制均经过100%生产测试。 使用标准统计质量控制
(SQC)方法,通过相关性指定了极端温度下的所有限制。 (2)
(3) 外部元件(例如钳位二极管,电感器,输入和输出电容器)会影响开关稳压器系统的性能。 如图26和图32所示使用LM2576 /
LM2576HV时,系统性能如电气特性:所有输出电压版本中所示。 (4)
(5) 在输出短路或过载的情况下,振荡器频率降低至大约11 kHz,这会导致调节后的输出电压从标称输出电压下降大约40%。 这种自我
保护功能通过将最小占空比从5%降低到大约2%,降低了IC的平均功耗。
Electrical Characteristics: All Output Voltage Versions (continued)
over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP(1) 1.4 MAX UNIT 1.8 2 V VSAT Saturation Voltage IOUT = 3 A (4) TJ = 25°C Applies over full operating DC I Max Duty Cycle (ON)(5) Current Limit(4)(3) temperature range 93% 4.2 98% 5.8 CL C TJ = 25° 6.9 7.5 IL I Q Applies over full operating temperature range Output = 0 V Output Leakage Current Output = ?1 V (6)(7) Output = ?1 V 3.5 2 A mA mA μA 7.5 5 50 30 10 Quiescent Current(6) ISTBY Standby Quiescent Current ON /OFF Pin = 5 V (OFF) 200 ON /OFF CONTROL TEST CIRCUIT Figure 26 and Figure 32 TJ = 25°C Applies over full operating 2.2 2.4 1.4 VIH VOUT = 0 V V ON /OFF Pin V Logic Input Level VOUT = Nominal Output temperature range TJ = 25°C Applies over full operating IL Voltage 1.2 1 0.8 V I IH temperature range 12 0 30 10 μA μA IIL ON /OFF Pin Input ON /OFF Pin = 5 V (OFF) Current ON /OFF Pin = 0 V (ON) (4)输出引脚拉电流。 没有二极管,电感器或电容器连接到输出。 (5)反馈引脚已从输出端移出并连接到0V。
(6)反馈引脚已从输出端移除,并针对可调,3.3V和5V版本连接至+12 V,对于12V和15V版本连接至+25 V,以强制输出晶体管截止。 (7)VIN = 40 V(对于高压版本为60 V)。
6.11 Typical Characteristics
(Circuit of Figure 26 and Figure 32)
Figure 1. Normalized Output Voltage Figure 2. Line Regulation
Figure 3. Dropout Voltage Figure 4. Current Limit
Figure 5. Quiescent Current Figure 6. Standby Quiescent Current
Typical Characteristics (continued)
(Circuit of Figure 26 and Figure 32) Figure 11. Quiescent Current versus Duty Cycle
Figure 12. Feedback Voltage versus Duty Cycle
Figure 7. Oscillator Frequency
Figure 8. Switch Saturation Voltage
Figure 10. Minimum Operating Voltage
Figure 9. Efficiency
Typical Characteristics (continued)
(Circuit of Figure 26 and Figure 32) Figure 13. Minimum Operating Voltage Figure 14. Quiescent Current versus Duty Cycle Figure 15. Feedback Voltage versus Duty Cycle Figure 16. Feedback Pin Current VOUT = 15 V A: Output Pin Voltage, 50 V/div If the DDPAK/TO-263 package is used, the thermal resistance can be B: Output Pin Current, 2 A/div reduced by increasing the PCB copper area thermally connected to C: Inductor Current, 2 A/div the package. Using 0.5 square inches of copper area, θJA is 50°C/W, D: Output Ripple Voltage, 50 mV/div, AC-Coupled with 1 square inch of copper area, θJA is 37°C/W, and with 1.6 or more square inches of copper area, θJA is 32°C/W.
Figure 17. Maximum Power Dissipation (DDPAK/TO-263) Horizontal Time Base: 5 μs/div Figure 18. Switching Waveforms
Typical Characteristics (continued)
(Circuit of Figure 26 and Figure 32) Figure 19. Load Transient Response
7 Detailed Description
7.1 Overview
LM2576 SIMPLE SWITCHER稳压器是一种易于使用的,非同步降压型DC-DC转换器,对于HV版本,其输入电压范围从40V至最高60V。 它具有出色的线路和负载调节能力,能够提供高达3A的DC负载电流。 这些设备提供3.3 V,5 V,12 V,15 V的固定输出电压,以及可调输出版本。 该系列只需要很少的外部元件,其引脚排列是为简单,最佳的PCB布局而设计的。
7.2 Functional Block Diagram
regulated DC Input
VIN
1 CIN + Rgulator 4
Feedback Internal ON/OFF 5 ON/OFF R2
R1 + Fixed Gain Error Amp ± + Comparator 3 Amp Switch
1 k ± Driver OUTPUT 2 D1 L1 VOUT + L
1.23 V
BAND-GAPREFERENCE 52 kHZ OSCILLATOR RESET SHUTDOWN LIMIT THERMAL CURRENT 3 COUT O A D GND
3.3 V R2 = 1.7 k 5 V, R2 = 3.1 k 12 V, R2 = 8.84 k 15 V, R2 = 11.3 k For ADJ. Version R1 = Open, R2 = 0 Ω Patent Pending
7.3.1 Undervoltage Lockout
某些应用中,希望保持稳压器保持关闭状态,直到输入电压达到某个阈值为止。 图20显示了完成该任务的欠压锁定电路,而图21显示了应用于降压-升压配置的相同电路。 这些电路使稳压器保持关闭状态,直到输入电压达到预 定水平为止。
VTH ≈ VZ1 + 2VBE(Q1) (1)
7.3 Feature Description
Feature Description (continued)
+VIN +VIN LM2576-XX
R1 20 + 1
20 K CIN 5 ON/OFF 3 GND
R2 10 K
Z1 Q1
Complete circuit not shown.
Figure 20. Undervoltage Lockout for Buck Circuit
+VIN
+VIN
R1
+
1LM2576-XX
20 K
20 K CIN 5 ON/OFF 3 GND
R2 10 K
Z1
Q1
-VOUT
Complete circuit not shown (see Figure 24).
Figure 21. Undervoltage Lockout
for Buck-Boost Circuit
7.3.2 Delayed Start-Up
The ON/OFF pin can be used to provide a delayed start-up feature as shown in Figure 22. With an input voltage of 20 V and for the part values shown, the circuit provides approximately 10 ms of delay time before the circuit begins switching. Increasing the RC time constant can provide longer delay times, but excessively large RC time constants can cause problems with input voltages that are high in 60-Hz or 120-Hz ripple, by coupling the ripple into the ON/OFF pin.
7.3.3 Adjustable Output, Low-Ripple Power Supply
Figure 23 shows a 3-A power supply that features an adjustable output voltage. An additional LC filter that reduces the output ripple by a factor of 10 or more is included in this circuit. Feature Description (continued)
+VIN +VIN + CD LM2576-XX 1 0.1 …F + 5 ON/OFF 3 GND
CIN 100 …F RD 47 K
Complete circuit not shown.
55 V Figure 22. Delayed Start-Up Feedback
+VIN 4 Unregulated DC Input 1 LM2576HV-ADJ Output L1 Output Voltage
5 CIN
+ 3 GND 100 …F 2 ON/OFF 150 μH D1 1N5822 + COUT R2 50 k 20 μH +1.2 to 50 V @3A
+ C1 2000 …F
1.21 k R1 100 …F
optional output ripple filter
Figure 23. 1.2-V to 55-V Adjustable 3-A Power Supply With Low Output Ripple
7.4.1 Shutdown Mode
The ON/OFF pin provides electrical ON and OFF control for the LM2576. When the voltage of this pin is higher than 1.4 V, the device is in shutdown mode. The typical standby current in this mode is 50 μA.
7.4.2 Active Mode
When the voltage of the ON/OFF pin is below 1.2 V, the device starts switching, and the output voltage rises until it reaches the normal regulation voltage.
7.4.3 Current Limit
LM2576器件具有电流限制功能,以防止在输出意外过载期间开关电流超过安全值。 该电流极限值可在ICL标题下 的《电气特性:所有输出电压版本》中找到。
7.4 Device Functional Modes
Device Functional Modes (continued)
LM2576使用逐周期峰值电流限制进行过载保护。 这有助于防止损坏设备和外部组件。 每当电感器电流超过《电气特性:所有输出电压版本》中给出的ICL值时,调节器便以电流限制模式工作。 如果负载电流大于3 A或转换器正在启动,则会发生这种情况。 请记住,最大可用负载电流取决于输入电压,输出电压和电感器值。 稳压器还集成了短路保护,以防止电感电流失控。 当FB引脚(ADJ)上的电压降至约0.58 V以下时,开关频率降至约11 kHz 。 这允许电感器电流在开关断开时间内充分下降,以防止饱和。
8.1 Application Information
8.1.1 Input Capacitor (CIN)
为了保持稳定性,稳压器输入引脚必须至少旁路一个100μF的电解电容。 电容器的引线必须保持短路,并放置在调节器附近。
如果工作温度范围包括低于-25°C的温度,则输入电容值可能需要更大。 对于大多数电解电容器,随着温度和寿命的降低,电容值会减小,ESR会增加。 并联陶瓷或固态钽电容器可提高调节器在低温下的稳定性。 为了最大程度地延长电容器的使用寿命,电容器的RMS纹波电流额定值必须大于:
8.1.2 Inductor Selection
所有开关稳压器都有两种基本的工作模式:连续和不连续。两种类型之间的差异与电感器电流有关,无论该电感器电流是连续流动还是在正常开关周期的一段时间内下降到零。每种模式均具有独特的工作特性,这可能会影响调节器的性能和要求。
LM2576(或任何SIMPLE SWITCHER系列)可用于连续和不连续操作模式。
图27至图31中的电感器值选择指南是针对连续电感器电流类型的降压稳压器设计而设计的。使用电感器选择指南中显示的电感器值时,峰峰值电感器纹波电流约为最大直流电流的20%至30%。在负载电流相对较大的情况下,电路以连续模式工作(电感器电流始终在流动),但是在轻负载条件下,电路被迫进入不连续模式(电感器电流在一段时间内降至零)。这种不连续的操作模式是完全可以接受的。对于轻负载(小于大约300 mA),可能需要在不连续模式下运行调节器,这主要是因为不连续模式所需的电感值较低。
选择指南选择了适合于连续模式工作的电感器值,但是如果选择的电感器值过高,则设计人员必须研究不连续工作的可能性。
电感器有不同的样式,例如罐形铁心,环形,E型框架,线轴铁心等,以及不同的铁心材料,例如铁氧体和铁粉。线轴芯是最便宜的类型,由缠绕在铁氧体棒芯上的线组成。这种结构使电感器价格便宜。但是,由于磁通量未完全包含在磁芯内,因此线轴磁芯会产生更多的电磁干扰(EMI)。由于示波器探头中的感应电压,此EMI可能会导致敏感电路出现问题或给出错误的示波器读数。
选型表中列出的电感器包括用于AIE的铁氧体罐芯结构,用于脉冲工程的铁粉环形磁芯以及用于Renco的铁氧体线圈芯。 (2)
Application Information (continued)
电感器不得超过其最大额定电流,因为它会饱和。 当电感器开始饱和时,电感迅速减小,并且电感器开始看起来主要是电阻性的(绕组的直流电阻),从而导致开关电流非常迅速地上升。 不同类型的电感器具有不同的饱和特性,选择电感器时必须考虑这一点。
电感制造商的数据手册包括电流和能量限制,以避免电感饱和。 8.1.3 Inductor Ripple Current
当切换器以连续模式运行时,电感器电流波形的范围从三角形到锯齿形(取决于输入电压)。 对于给定的输入电压和输出电压,该电感器电流波形的峰峰值幅度保持恒定。 随着负载电流的上升或下降,整个锯齿电流波形也将上升或下降。 该波形的平均DC值等于DC负载电流(在降压稳压器配置中)。
如果负载电流降至足够低的水平,则锯齿电流波形的底部将达到零,并且切换器将切换到不连续的工作模式。 这是一种完全可以接受的操作模式。 如果负载电流足够轻,则任何降压开关稳压器(无论电感值有多大)都必须不连续运行。
8.1.4 Output Capacitor
需要一个输出电容器来过滤输出电压,并且还需要一个环路稳定性。 必须使用短PCB走线将电容器放置在LM2576附近。 通常使用标准的铝电解电容就足够了,但是TI建议使用低ESR类型,以实现低输出纹波电压和良好的稳定性。 电容器的ESR取决于许多因素,包括:值,额定电压,物理尺寸和结构类型。 通常,低值或低电压(小于12 V)的电解电容器通常具有较高的ESR值。
输出纹波电压的大小主要取决于输出电容器的ESR(等效串联电阻)和电感器纹波电流(IIND)的幅度。 参见“电感纹波电流”部分。
较低的电容器值(220μF至1000μF)通常允许50 mV至150 mV的输出纹波电压,而较大容量的电容器则将纹波减小至大约20 mV至50 mV。
Output Ripple Voltage = ( IIND)(ESR of COUT) (3)
为了进一步降低输出纹波电压,可以并联几个标准电解电容器,也可以使用更高等级的电容器。 这样的电容器通常被称为高频,低电感或低ESR。 这些将输出纹波减小到10 mV或20 mV。 但是,以连续模式工作时,将ESR降低至0.03Ω以下可能会导致稳压器不稳定。
钽电容器的ESR可能很低,如果它是唯一的输出电容器,则必须仔细评估。 由于其良好的低温特性,钽可与铝电解电容器并联使用,钽占总电容的10%或20%。
电容器在52 kHz时的纹波电流额定值必须至少比峰峰值电感器纹波电流高50%。
8.1.5 Catch Diode
降压稳压器需要一个二极管来为开关断开时的电感器电流提供返回路径。 必须使用短引线和短印刷电路走线将此二极管靠近LM2576放置。
由于其快速的开关速度和低的正向压降,肖特基二极管可提供最佳效率,尤其是在低输出电压开关稳压器(小于5 V)中。 快速恢复,高效或超快速恢复二极管也适用,但是某些具有突然关断特性的二极管会引起不稳定和EMI问题。 具有软恢复特性的快速恢复二极管是更好的选择。 标准60 Hz二极管(例如1N4001或1N5400等)也不适用。 肖特基和软快速恢复二极管选择指南,请参见表3。
Application Information (continued)
8.1.6 Output Voltage Ripple and Transients
开关电源的输出电压包含开关频率处的锯齿波纹电压,通常约为输出电压的1%,并且在锯齿波的峰值处还可能包含短电压尖峰。
输出纹波电压主要归因于电感器锯齿形纹波电流乘以输出电容器的ESR(请参阅“电感选择”部分)。
由于输出开关的快速开关动作以及输出滤波电容器的寄生电感,会出现电压尖峰。为了减小这些电压尖峰,可以使用特殊的低电感电容器,并且其引线长度必须保持较短。接线电感,杂散电容和用于评估这些瞬态的示波器探头都会影响这些尖峰的幅度。
可以在输出端增加一个额外的小型LC滤波器(20μH和100μF)(如图23所示),以进一步减少输出纹波和瞬变量。使用该滤波器可以将输出纹波电压和瞬态降低10倍。
8.1.7 Feedback Connection
LM2576(固定电压版本)反馈引脚必须连接到开关电源的输出电压点。 使用可调版本时,请在LM2576附近物理放置两个输出电压编程电阻,以免拾取有害的噪声。 避免使用大于100kΩ的电阻,因为这样会增加噪声吸收的机会。
8.1.8 ON/OFF INPUT
For normal operation, the ON/OFF pin must be grounded or driven with a low-level TTL voltage (typically below 1.6 V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The ON/OFF pin can be safely pulled up to +VIN without a resistor in series with it. The ON/OFF pin must not be left open.
8.1.9 Inverting Regulator
图24显示了buck-boost配置的LM2576-12,可从正输入电压产生负12V输出。该电路将稳压器的接地引脚自举到负输出电压,然后通过将反馈引脚接地,稳压器感测反相的输出电压并将其调节至-12V。
对于12 V或更高的输入电压,此配置中的最大可用输出电流约为700 mA。在较轻的负载下,所需的最小输入电压降至约4.7V。
该降压-升压配置中的开关电流高于标准的降压模式设计,从而降低了可用的输出电流。此外,降压-升压转换器的启动输入电流高于标准的降压型稳压器,并且可能使输入电源过载,电流限制小于
5 A.使用延迟开启或欠压锁定电路(在负升压稳压器部分中描述)可以使输入电压上升到足够高的水平,然后才允许开关打开。
由于降压和降压-升压调节器拓扑之间的结构差异,因此降压调节器设计过程部分不能用于选择电感器或输出电容器。降压-升压设计的推荐电感值范围在68μH至220μH之间,并且输出电容器的值必须大于降压设计通常所需的值。低输入电压或高输出电流需要一个大容量输出电容器(以数千微法拉为单位)。
电感峰值电流与开关峰值电流相同,可通过公式4计算:
where
? fosc = 52 kHz (4) Under normal continuous inductor current operating conditions, the minimum VIN represents the worst case.
Select an inductor that is rated for the peak current anticipated.
Application Information (continued)
Feedback 4 +12 To +45 V Unregulated DC Input +VIN LM2576HV-ADJ 1 Output L1 68 μH + CIN 100 …F 2 3 GND
5 ON/OFF + D1 1N5822 COUT
2200 …F
-12 @ 0.7 A REGULATED DC INPUT
Figure 24. Inverting Buck-Boost Develops ?12 V
Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage.
For a ?12-V output, the maximum input voltage for the LM2576 is +28 V, or +48 V for the LM2576HV.
8.1.10 Negative Boost Regulator
Another variation on the buck-boost topology is the negative boost configuration. The circuit in Figure 25 accepts an input voltage ranging from ?5 V to ?12 V and provides a regulated ?12-V output. Input voltages greater than ?12 V causes the output to rise above ?12 V, but does not damage the regulator.
Feedback Output + VIN COUT 1 LM2576-12 4 2200 PF LOW ESR 2 + CIN 100 PF 3 GND 5 ON/OFF 1N5820 VOUT = -12 V -VIN 100 PH
-5 V to -12 V Typical Load Current
400 mA for VIN = ?5.2 V 750 mA for VIN = ?7 V Heat sink may be required.
Figure 25. Negative Boost
Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low input voltages. Output load current limitations are a result of the maximum current rating of the switch. Also, boost regulators cannot provide current-limiting load protection in the event of a shorted load, so some other means (such as a fuse) can be necessary.
8.2.1 Fixed Output Voltage Version
8.2 Typical Applications
+VIN Feedback
LM2576HV- Fixed Output 1 4 Output 2 5 L1 VOUT UNREGULATED VIN
+ 100 …F 100 μH DC INPUT
GND 3 + CIN ON/OFF COUT D1 1000 μF
MBR360 L O A D
CIN — 100-μF, 75-V, Aluminum Electrolytic COUT — 1000-μF, 25-V, Aluminum Electrolytic
D1 — Schottky, MBR360
L1 — 100 μH, Pulse Eng. PE-92108 R1 — 2 k, 0.1% R2 — 6.12 k, 0.1%
Figure 26. Fixed Output Voltage Versions
8.2.1.1 Design Requirements
Table 1 lists the design parameters of this example.
Table 1. Design Parameters
DESIGN PARAMETER Regulated Output Voltage (3.3 V, 5 V, 12 V, or 15 V), VOUT Maximum Input Voltage, VIN(Max) Maximum Load Current, ILOAD(Max) EXAMPLE VALUE 5 V 15 V 3 A
8.2.1.2 Detailed Design Procedure
8.2.1.2.1 Custom Design with WEBENCH Tools
单击此处使用WEBENCH?Power Designer创建自定义设计。 1.首先输入您的VIN,VOUT和IOUT要求。
2.使用优化器转盘针对诸如效率,占地面积和成本之类的关键参数优化设计,并将该设计与德州仪器(TI)的其他可能解决方案进行比较。
3.WEBENCH Power Designer为您提供了定制的原理图以及具有实时定价和组件可用性的材料清单。
4.在大多数情况下,您还可以:
–进行电气仿真,以查看重要的波形和电路性能, –运行热仿真以了解您的板的热性能,
–将自定义的原理图和布局导出为流行的CAD格式, –打印设计的PDF报告,并与同事共享您的设计。
8.2.1.2.2 Inductor Selection (L1)
1. Select the correct Inductor value selection guide from Figure 27, Figure 28, Figure 29, or Figure 30. (Output
voltages of 3.3 V, 5 V, 12 V, or 15 V, respectively). For other output voltages, see the design procedure for the adjustable version. Use the selection guide shown in Figure 28.
2. From the inductor value selection guide, identify the inductance region intersected by VIN(Max) and
ILOAD(Max), and note the inductor code for that region. From the selection guide, the inductance area intersected by the 15-V line and 3-A line is L100.
3. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in
Figure 27. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of 1.15 × ILOAD. For additional inductor information, see the Inductor Selection section. Inductor value required is 100 μH from the table in Figure 27. Choose AIE 415-0930, Pulse Engineering PE92108, or Renco RL2444.
8.2.1.2.3 Output Capacitor Selection (COUT)
1. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching
regulator loop. For stable operation and an acceptable output ripple voltage, (approximately 1% of the output voltage) TI recommends a value between 100 μF and 470 μF. COUT = 680-μF to 2000-μF standard aluminum electrolytic was chosen.
2. The voltage rating of the capacitor must be at least 1.5 times greater than the output voltage. For a 5-V
regulator, a rating of at least 8 V is appropriate, and a 10-V or 15-V rating is recommended. Capacitor voltage rating = 20 V. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason, it can be necessary to select a capacitor rated for a higher voltage than would normally be needed.
8.2.1.2.4 Catch Diode Selection (D1)
1. The catch-diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the
power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2576. The most stressful condition for this diode is an overload or shorted output condition. For this example, a 3-A current rating is adequate.
2. The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage. Use a 20-V
1N5823 or SR302 Schottky diode, or any of the suggested fast-recovery diodes shown in Table 3.
8.2.1.2.5 Input Capacitor (CIN)
An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation. A 100-μF, 25-V aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.
8.2.2 Application Curves
Figure 27. LM2576(HV)-3.3 Figure 28. LM2576(HV)-5.0
8.2.3 Adjusted Output Voltage Version
Figure 29. LM2576(HV)-12 Figure 30. LM2576(HV)-15 Figure 31. LM2576(HV)-ADJ
+VIN Feedback
1 LM2576HV- ADJ 4 Output L1 VOUT 5 V UNREGULATED 7 V ± 60 V + 100 …F 2 5 100 μH DC INPUT
GND 3 + CIN ON/OFF COUT R2 L
D1 MBR360 1000 μF O R1 D A
where
VREF = 1.23 V, R1 between 1 k and 5 k
Figure 32. Adjustable Output Voltage Version
8.2.3.1 Design Requirements
Table 2 lists the design parameters of this example.
Table 2. Design Parameters
DESIGN PARAMETER Regulated Output Voltage, VOUT Maximum Input Voltage, VIN(Max) Maximum Load Current, ILOAD(Max) Switching Frequency, F
8.2.3.2 Detailed Design Procedure
8.2.3.2.1 Programming Output Voltage
Select R1 and R2, as shown in Figure 32. Use Equation 5 to select the appropriate resistor values.
EXAMPLE VALUE 10 V 25 V 3 A Fixed at 52 kHz
R1 can be between 1 k and 5 k. (For best temperature coefficient and stability with time, use 1% metal film resistors)
R2 = 1 k (8.13 ? 1) = 7.13 k, closest 1% value is 7.15 k
8.2.3.2.2 Inductor Selection (L1)
1. Calculate the inductor Volt ? microsecond constant, E × T (V × μs), from Equation 8:
(5)
(6)
(7)
VOUTE u TV INV OUT
V1000
IN u F IN KHZ
V u V
2. Calculate E × T (V × μs):
E u T 25 10 u 10 u 1000 115 V u V
25 (9) 52
3. Use the E ? T value from the previous formula and match it with the E × T number on the vertical axis of the
inductor value selection guide shown in Figure 31. E ×(10) T = 115 V × μs
4. On the horizontal axis, select the maximum load current.
(8)
ILOAD(Max) = 3 A (11)
5. Identify the inductance region intersected by the E × T value and the maximum load current value. Note the
inductor code for that region. Inductance Region = H150
6. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in
Table 4. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of 1.15 × ILOAD. For additional inductor information, see the Inductor Selection section. Inductor Value = 150 μH. Choose from AIE part #415-0936, Pulse Engineering part #PE-531115, or Renco part #RL2445.
8.2.3.2.3 Output Capacitor Selection (COUT)
1. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching
regulator loop. For stable operation, the capacitor must satisfy :
IN M
C OUT t 13,300 )
V OUT uL +
AX
V
yields capacitor values between 10 μF and 2200 μF that satisfies the loop requirements for stable operation.
To achieve an acceptable output ripple voltage, (approximately 1% of the output voltage) and transient response, the output capacitor may need to be several times larger than yields.
25
COUT t 13,300 22.2 )
10 u 150
However, for acceptable output ripple voltage select: COUT ≥ 680 μF
COUT = 680-μF electrolytic capacitor
2. The voltage rating of the capacitor must be at last 1.5 times greater than the output voltage. For a 10-V
regulator, a rating of at least 15 V or more is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason, it can be necessary to select a capacitor rate for a higher voltage than would normally be needed.
8.2.3.2.4 Catch Diode Selection (D1)
1. The catch-diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the
power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2576. The most stressful condition for this diode is an overload or shorted output. See Table 3. For this example, a 3.3-A current rating is adequate.
2. The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage. Use a 30-V
31DQ03 Schottky diode, or any of the suggested fast-recovery diodes in Table 3.
8.2.3.2.5 Input Capacitor (CIN)
An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation. A 100-μF aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.
Table 3. Diode Selection Guide VR 20 V 3 A 1N5820 MBR320P SR302 1N5821 MBR330 31DQ03 SR303 1N5822 SCHOTTKY 4 A to 6 A 3 A FAST RECOVERY 4 A to 6 A 1N5823 30 V 50WQ03 1N5824 40 V MBR340 31DQ04 SR304 MBR350 31DQ05 SR305 MBR360 DQ06 SR306 MBR340 50WQ04 1N5825 The following diodes are all rated to 100-V 31DF1 HER302 The following diodes are all rated to 100-V 50WF10 MUR410HER602 50 V 50WQ05 60 V 50WR06 50SQ060
INDUCTOR CODE L47 L68 L100 L150 L220 L330 L470 L680 H150 H220 H330 H470 H680 H1000 H1500 H2200 Table 4. Inductor Selection by Manufacturer's Part Number SCHOTT(1) PULSE ENG.(2) INDUCTOR VALUE 47 μH 671 26980 PE-53112 68 μH 671 26990 PE-92114 100 μH 671 27000 PE-92108 150 μH 671 27010 PE-53113 220 μH 671 27020 PE-52626 330 μH 671 27030 PE-52627 470 μH 671 27040 PE-53114 680 μH 671 27050 PE-52629 150 μH 671 27060 PE-53115 220 μH 671 27070 PE-53116 330 μH 671 27080 PE-53117 470 μH 671 27090 PE-53118 680 μH 671 27100 PE-53119 1000 μH 671 27110 PE-53120 1500 μH 671 27120 PE-53121 2200 μH 671 27130 PE-53122 RENCO(3) RL2442 RL2443 RL2444 RL1954 RL1953 RL1952 RL1951 RL1950 RL2445 RL2446 RL2447 RL1961 RL1960 RL1959 RL1958 RL2448 (1) Schott Corporation, (612) 475-1173, 1000 Parkers Lake Road, Wayzata, MN 55391.
(2) Pulse Engineering, (619) 674-8100, P.O. Box 12235, San Diego, CA 92112.
(3) Renco Electronics Incorporated, (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729.
9 Power Supply Recommendations
像在任何开关稳压器中一样,布局非常重要。 与布线电感相关的快速开关电流会产生瞬态电压,这可能会引起问题。 为了使电感和接地环路最小,用粗线表示的引线长度必须尽可能短。 为了获得最佳效果,必须使用单点接地(如图所示)或接地平面结构。 当使用可调版本时,应将编程电阻器实际放置在调节器附近,以使敏感反馈布线短。
10 Layout
10.1 Layout Guidelines
电路板布局对于开关电源的正常运行至关重要。首先,接地平面面积必须足够用于散热。其次,必须遵循适当的准则以减少开关噪声的影响。开关模式转换器是非常快速的开关设备。在这种情况下,输入电流的快速增加与寄生走线电感的组合会产生有害的L di / dt噪声尖峰。随着输出电流的增加,这种噪声的幅度趋于增加。这种噪声可能会变成电磁干扰(EMI),也可能导致设备性能出现问题。因此,请注意布局以最小化此开关噪声的影响。最重要的布局规则是保持交流电流环路尽可能小。图33显示了降压转换器中的电流。顶部示意图显示了一条虚线,该虚线代表顶部开关导通状态期间的电流。中间的示意图显示了在顶部开关断开状态期间的电流。底部示意图显示了称为交流电流的电流。这些交流电流是最关键的,因为它们会在很短的时间内变化。底部原理图的虚线是保持尽可能短和宽的迹线。这也会产生较小的环路面积,从而减小环路电感。为避免布局引起的功能问题,请查看PCB布局示例。如图34所示,如果放置LM2576器件,旁路电容器,肖特基二极管,RFBB,RFBT和电感器,则可获得最佳结果。TI还建议使用2盎司或更厚的铜板以帮助散热。并减少板走线的寄生电感。有关更多信息,请参见AN-1229 SIMPLESWITCHER?PCB布局指南应用报告。
Figure 33. Current Flow in Buck Application
10.2 Layout Example
Figure 34. LM2576xx Layout Example
10.3 Grounding
为了保持输出电压的稳定性,电源接地连接必须为低阻抗(请参见图26和图32)。 对于5引线TO-220和DDPAK / TO-263型封装,接线片和引脚3都接地,并且可以使用任何一种连接方式,因为它们都是同一铜引线框架的一部分。
10.4 Heat Sink and Thermal Considerations
In many cases, only a small heat sink is required to keep the LM2576 junction temperature within the allowed operating range. For each application, to determine whether or not a heat sink is required, the following must be identified:
1. Maximum ambient temperature (in the application) 2. Maximum regulator power dissipation (in application) 3. Maximum allowed junction temperature (125°C for the LM2576). For a safe, conservative design, a
temperature approximately 15°C cooler than the maximum temperatures must be selected. 4. LM2576 package thermal resistances θJA and θJC. Total power dissipated by the LM2576 can be estimated in Equation 12:
PD = (VIN)(IQ) + (VO/VIN)(ILOAD)(VSAT)
where
?
? ?
IQ (quiescent current) and VSAT can be found in the Typical Characteristics VIN is the applied minimum input voltage VO is the regulated output voltage
Heat Sink and Thermal Considerations (continued)
? ILOAD is the load current (12)
The dynamic losses during turnon and turnoff are negligible if a Schottky type catch diode is used.
When no heat sink is used, the junction temperature rise can be determined by Equation 13:
TJ = (PD)(θJA) (13)
To arrive at the actual operating junction temperature, add the junction temperature rise to the maximum ambient temperature.
TJ = TJ + TA (14)
If the actual operating junction temperature is greater than the selected safe operating junction temperature determined in step 3, then a heat sink is required.
When using a heat sink, the junction temperature rise can be determined by Equation 15:
(15) The operating junction temperature is:
TJ = TA + TJ (16)
As in Equation 16, if the actual operating junction temperature is greater than the selected safe operating junction temperature, then a larger heat sink is required (one that has a lower thermal resistance).
J
D
JC
interface
Heat sink
T= (P)(θ+θ+θ)
11 Device and Documentation Support
11.1 Device Support
11.1.1 Device Nomenclature
11.1.1.1 Definition of Terms
BUCK REGULATOR A switching regulator topology in which a higher voltage is converted to a lower voltage.
Also known as a step-down switching regulator.
BUCK-BOOST REGULATOR A switching regulator topology in which a positive voltage is converted to a
negative voltage without a transformer.
DUTY CYCLE (D) Ratio of the output switch's on-time to the oscillator period.
CATCH DIODE OR CURRENT STEERING DIODE The diode which provides a return path for the load current
when the LM2576 switch is OFF.
EFFICIENCY (η) The proportion of input power actually delivered to the load.
(17)
CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR) The purely resistive component of a real capacitor's
impedance (see Figure 35). It causes power loss resulting in capacitor heating, which directly affects the capacitor's operating lifetime. When used as a switching regulator output filter, higher ESR values result in higher output ripple voltages.
Figure 35. Simple Model of a Real Capacitor
Most standard aluminum electrolytic capacitors in the 100 μF–1000 μF range have 0.5Ω to 0.1Ω ESR. Higher-grade capacitors (low-ESR, high-frequency, or low-inductance) in the 100 μF to 1000 μF range generally have ESR of less than 0.15Ω.
EQUIVALENT SERIES INDUCTANCE (ESL) The pure inductance component of a capacitor (see Figure 35).
The amount of inductance is determined to a large extent on the capacitor's construction. In a buck regulator, this unwanted inductance causes voltage spikes to appear on the output.
OUTPUT RIPPLE VOLTAGE The AC component of the switching regulator's output voltage. It is usually
dominated by the output capacitor's ESR multiplied by the inductor's ripple current ( IIND). The peak-to-peak value of this sawtooth ripple current can be determined by reading Inductor Ripple Current.
CAPACITOR RIPPLE CURRENT RMS value of the maximum allowable alternating current at which a capacitor
can be operated continuously at a specified temperature.
(18)
STANDBY QUIESCENT CURRENT (ISTBY) Supply current required by the LM2576 when in the standby mode (ON /OFF pin is driven to TTL-high voltage, thus turning the output switch OFF).
INDUCTOR RIPPLE CURRENT ( IIND) The peak-to-peak value of the inductor current waveform, typically a
sawtooth waveform when the regulator is operating in the continuous mode (vs. discontinuous mode).
CONTINUOUS/DISCONTINUOUS MODE OPERATION Relates to the inductor current. In the continuous mode,
the inductor current is always flowing and never drops to zero, vs. the discontinuous mode, where the inductor current drops to zero for a period of time in the normal switching cycle.
INDUCTOR SATURATION The condition which exists when an inductor cannot hold any more magnetic flux.
Device Support (continued)
When an inductor saturates, the inductor appears less inductive and the resistive component
dominates. Inductor current is then limited only by the DC resistance of the wire and the available source current.
OPERATING VOLT MICROSECOND CONSTANT (E?Top) The product (in VoIt?μs) of the voltage applied to the
inductor and the time the voltage is applied. This E?Top constant is a measure of the energy handling capability of an inductor and is dependent upon the type of core, the core area, the number of turns, and the duty cycle.
11.1.2 Development Support
11.1.2.1 Custom Design with WEBENCH Tools
Create a Custom Design with WEBENCH Tools
11.2 Documentation Support
11.2.1 Related Documentation
For related documentation, see the following:
Texas Instruments, AN-1229 SIMPLE SWITCHER? PCB Layout Guidelines
11.3 Related Links
The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.
Table 5. Related Links PARTS LM2576 PRODUCT FOLDER Click here Click here SAMPLE & BUY Click here Click here TECHNICAL DOCUMENTS Click here Click here TOOLS & SOFTWARE Click here Click here SUPPORT & COMMUNITY Click here Click here LM2576HV 11.4 Support Resources
TI E2E? support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided \not necessarily reflect TI's views; see TI's Terms of Use.
11.5 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.
11.6 Trademarks
E2E is a trademark of Texas Instruments.
SIMPLE SWITCHER, WEBENCH are registered trademarks of Texas Instruments. All other trademarks are the property of their respective owners.
11.7 Electrostatic Discharge Caution
11.8 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
以下页面包括机械,包装和订购信息。 此信息是可用于指定设备的最新数据。 此数据如有更改,恕不另行通知和修订本文档。
PACKAGING INFORMATION
Orderable Device LM2576HVS-12 Status Package Type Package Pins Package Drawing Qty (1) NRND Eco Plan (2)Lead/Ball Finish (6)MSL Peak Temp (3)Op Temp (°C) Device Marking (4/5) -40 to 125 LM2576HVS-12/NOPB ACTIVE DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 TO-220 KTT 5 45 TBD Call TI SN Call TI KTT 5 45 Level-3-245C-168 HR -40 to 125 LM2576 HVS-12 P+ LM2576 HVS-12 P+ LM2576 HVS-3.3 P+ LM2576 HVS-5.0 P+ LM2576 HVS-5.0 P+ LM2576 HVS-ADJ P+ LM2576 HVS-ADJ P+ LM2576 HVS-12 P+ LM2576 HVS-12 P+ LM2576 HVS-3.3 P+ LM2576 HVS-5.0 P+ LM2576 HVS-5.0 P+ LM2576 HVS-ADJ P+ LM2576 HVS-ADJ P+ LM2576HVT -12 P+ LM2576HVT -12 P+ LM2576HVS-3.3/NOPB ACTIVE KTT 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN Level-3-245C-168 HR -40 to 125 LM2576HVS-5.0 NRND KTT 5 45 Call TI Call TI -40 to 125 LM2576HVS-5.0/NOPB ACTIVE KTT 5 45 Green (RoHS & no Sb/Br) TBD SN Level-3-245C-168 HR -40 to 125 LM2576HVS-ADJ NRND KTT 5 45 Call TI Call TI -40 to 125 LM2576HVS-ADJ/NOPB ACTIVE KTT 5 45 Green (RoHS & no Sb/Br) TBD SN Level-3-245C-168 HR -40 to 125 LM2576HVSX-12 NRND KTT 5 500 Call TI Call TI -40 to 125 LM2576HVSX-12/NOPB ACTIVE KTT 5 500 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN Level-3-245C-168 HR -40 to 125 LM2576HVSX-3.3/NOPB ACTIVE KTT 5 500 SN Level-3-245C-168 HR -40 to 125 LM2576HVSX-5.0 NRND KTT 5 500 Call TI Call TI -40 to 125 LM2576HVSX-5.0/NOPB ACTIVE KTT 5 500 Green (RoHS & no Sb/Br) TBD SN Level-3-245C-168 HR -40 to 125 LM2576HVSX-ADJ NRND KTT 5 500 Call TI Call TI -40 to 125 LM2576HVSX-ADJ/NOPB ACTIVE KTT 5 500 Green (RoHS & no Sb/Br) TBD SN Level-3-245C-168 HR -40 to 125 LM2576HVT-12 NRND KC 5 45 Call TI Call TI -40 to 125 LM2576HVT-12/LF03 ACTIVE TO-220 NDH 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) SN SN LM2576HVT-12/NOPB ACTIVE TO-220 KC 5 45 Level-1-NA-UNLIM Level-1-NA-UNLIM -40 to 125
LM2576HVT -12 P+ Addendum-Page 1
9-Jun-2024
Orderable Device LM2576HVT-15/LB03 Status Package Type Package Pins Package Drawing Qty (1) NRND TO-220 NDH 5 45 Eco Plan (2)Lead/Ball Finish (6)MSL Peak Temp (3)Op Temp (°C) Device Marking (4/5) TBD Call TI SN SN Call TI LM2576HVT-15/LF03 ACTIVE TO-220 NDH 5 45 LM2576HVT-15/NOPB ACTIVE TO-220 KC 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD LM2576HVT-5.0 NRND TO-220 KC 5 45 LM2576HVT-5.0/LB03 NRND TO-220 NDH 5 45 TBD Call TI LM2576HVT-5.0/LF02 ACTIVE TO-220 NEB 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN SN SN Call TI LM2576HVT-5.0/LF03 ACTIVE TO-220 NDH 5 45 LM2576HVT-5.0/NOPB ACTIVE TO-220 KC 5 45 LM2576HVT-ADJ NRND TO-220 KC 5 45 LM2576HVT-ADJ/LB03 NRND TO-220 NDH 5 45 TBD Call TI LM2576HVT-ADJ/LF03 ACTIVE TO-220 NDH 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN SN Call TI LM2576HVT-ADJ/NOPB ACTIVE TO-220 KC 5 45 LM2576S-12 NRND DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 KTT 5 45 LM2576S-12/NOPB ACTIVE KTT 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN SN Call TI LM2576S-3.3/NOPB ACTIVE KTT 5 45 LM2576S-5.0 NRND KTT 5 45 LM2576S-5.0/NOPB ACTIVE KTT 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) SN SN LM2576S-ADJ/NOPB ACTIVE KTT 5 45 Level-1-NA-UNLIM Level-1-NA-UNLIM Call TI Call TI Level-1-NA-UNLIM Level-1-NA-UNLIM Level-1-NA-UNLIM Call TI Call TI Level-1-NA-UNLIM Level-1-NA-UNLIM Call TI Level-3-245C-168 HR Level-3-245C-168 HR Call TI Level-3-245C-168 HR Level-3-245C-168 HR Call TI LM2576HVT -15 P+ LM2576HVT -15 P+ -40 to 125 -40 to 125 LM2576HVT -15 P+ LM2576HVT -5.0 P+ LM2576HVT -5.0 P+ LM2576HVT -5.0 P+ LM2576HVT -5.0 P+ -40 to 125 -40 to 125 LM2576HVT -5.0 P+ LM2576HVT -ADJ P+ LM2576HVT -ADJ P+ LM2576HVT -ADJ P+ -40 to 125 -40 to 125 -40 to 125 -40 to 125 -40 to 125 -40 to 125 -40 to 125 LM2576HVT -ADJ P+ LM2576S -12 P+ LM2576S -12 P+ LM2576S -3.3 P+ LM2576S -5.0 P+ LM2576S -5.0 P+ LM2576S -ADJ P+
Addendum-Page 2
PACKAGE OPTION ADDENDUM
Orderable Device LM2576SX-3.3/NOPB Status Package Type Package Pins Package Drawing Qty (1) ACTIVE Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)Op Temp (°C) Device Marking (4/5) LM2576SX-5.0/NOPB ACTIVE DDPAK/ TO-263 DDPAK/ TO-263 DDPAK/ TO-263 TO-220 KTT 5 500 KTT 5 500 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN (6) -40 to 125 Level-3-245C-168 HR SN Level-3-245C-168 HR -40 to 125 LM2576S -3.3 P+ LM2576S -5.0 P+ LM2576S -ADJ P+ LM2576T -12 P+ LM2576T -12 P+ LM2576T -12 P+ LM2576SX-ADJ/NOPB ACTIVE KTT 5 500 SN Level-3-245C-168 HR -40 to 125 LM2576T-12 NRND KC 5 45 Call TI Call TI -40 to 125 LM2576T-12/LB03 NRND TO-220 NDH 5 45 TBD Call TI LM2576T-12/LF03 ACTIVE TO-220 NDH 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN SN LM2576T-12/NOPB ACTIVE TO-220 KC 5 45 Call TI Level-1-NA-UNLIM Level-1-NA-UNLIM -40 to 125 LM2576T-15/LF03 ACTIVE TO-220 NDH 5 45 SN SN LM2576T-15/NOPB ACTIVE TO-220 KC 5 45 Level-1-NA-UNLIM Level-1-NA-UNLIM -40 to 125 LM2576T -12 P+ LM2576T -15 P+ LM2576T -15 P+ LM2576T -3.3 P+ LM2576T-3.3/LF03 ACTIVE TO-220 NDH 5 45 SN SN LM2576T-3.3/NOPB ACTIVE TO-220 KC 5 45 Level-1-NA-UNLIM Level-1-NA-UNLIM -40 to 125 LM2576T-5.0 NRND TO-220 KC 5 45 Call TI Call TI -40 to 125 LM2576T -3.3 P+ LM2576T -5.0 P+ LM2576T -5.0 P+ LM2576T -5.0 P+ LM2576T -5.0 P+ LM2576T-5.0/LB03 NRND TO-220 NDH 5 45 TBD Call TI LM2576T-5.0/LF02 ACTIVE TO-220 NEB 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) TBD SN SN SN LM2576T-5.0/LF03 ACTIVE TO-220 NDH 5 45 LM2576T-5.0/NOPB ACTIVE TO-220 KC 5 45 Call TI Level-1-NA-UNLIM Level-1-NA-UNLIM Level-1-NA-UNLIM -40 to 125 LM2576T-ADJ NRND TO-220 KC 5 45 Call TI Call TI -40 to 125 LM2576T -5.0 P+ LM2576T -ADJ P+ LM2576T -ADJ P+ LM2576T-ADJ/LB03 NRND TO-220 NDH 5 45 TBD Call TI Call TI
Addendum-Page 3
9-Jun-2024
Orderable Device LM2576T-ADJ/LF02 Status Package Type Package Pins Package Drawing Qty (1) ACTIVE TO-220 NEB 5 45 Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)Op Temp (°C) Device Marking (4/5) LM2576T-ADJ/LF03 ACTIVE TO-220 NDH 5 45 Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) SN (6) LM2576T -ADJ P+ LM2576T -ADJ P+ LM2576T -ADJ P+ SN SN LM2576T-ADJ/NOPB ACTIVE TO-220 KC 5 45 Level-1-NA-UNLIM Level-1-NA-UNLIM -40 to 125 Level-1-NA-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines \ do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, \
of products as \
RoHS Exempt: TI defines \
Green: TI defines \
based flame retardants must also meet the <=1000ppm threshold requirement.
(3) (4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a \ previous line and the two combined represent the entire Device Marking for that device.
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on
information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceedthe total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 4
TAPE AND REEL INFORMATION
*All dimensions are nominal Device LM2576HVSX-12 Package Package Pins Type Drawing DDPAK/ KTT TO-263 5 SPQ Reel Reel A0 B0 K0 P1 W Pin1 Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1 (mm) 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 500 5 500 330.0 24.4 24.4 10.75 14.85 5.0 16.0 24.0 Q2 LM2576HVSX-12/NOPB DDPAK/ KTT TO-263 5 500 330.0 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 LM2576HVSX-3.3/NOPB DDPAK/ KTT TO-263 LM2576HVSX-5.0 DDPAK/ KTT TO-263 5 500 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 5 5 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 LM2576HVSX-5.0/NOPB DDPAK/ KTT TO-263 LM2576HVSX-ADJ 5 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 DDPAK/ KTT TO-263 5 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 LM2576HVSX-ADJ/NOPB DDPAK/ KTT TO-263 LM2576SX-3.3/NOPB 5 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 LM2576SX-5.0/NOPB DDPAK/ KTT TO-263 DDPAK/ KTT TO-263 DDPAK/ KTT TO-263 5 500 330.0 24.4 10.75 14.85 5.0 16.0 24.0 Q2 LM2576SX-ADJ/NOPB 10.75 14.85 5.0 16.0 24.0 Q2
Pack Materials-Page 1
*All dimensions are nominal PACKAGE MATERIALS INFORMATION
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM2576HVSX-12 LM2576HVSX-12/NOPB LM2576HVSX-3.3/NOPB LM2576HVSX-5.0 LM2576HVSX-5.0/NOPB LM2576HVSX-ADJ LM2576SX-3.3/NOPB LM2576SX-5.0/NOPB DDPAK/TO-263 DDPAK/TO-263 DDPAK/TO-263 DDPAK/TO-263 DDPAK/TO-263 DDPAK/TO-263 DDPAK/TO-263 DDPAK/TO-263 DDPAK/TO-263 KTT KTT KTT KTT KTT KTT KTT KTT KTT KTT 5 5 5 5 5 5 5 5 5 5 500 500 500 500 500 500 500 500 500 500 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 367.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 LM2576HVSX-ADJ/NOPB DDPAK/TO-263 LM2576SX-ADJ/NOPB Pack Materials-Page 2
SCALE 0.850KC0005A
TO-220 - 16.51 mm max height TO-220
3.05 2.54
10.67 9.65
4.83 4.06
A
B
1.40 1.14
8.89 6.86
6.86 5.69
OPTIONAL CHAMFER
(6.275)
3.71-3.96
2X (R1)
OPTIONAL
16.51
MAX
12.88 10.08
9.25 7.67
C
(4.25) PIN 1 ID (OPTIONAL)
NOTE 3
14.73 12.29
5X 1.02
0.64
1 5
0.61 0.30
3.05 2.03
0.25 C A B 4X 1.7
6.8
1 5
NOTES:
1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Shape may vary per different assembly sites.
KC0005A
PKG
METAL TYP
0.07 MAX ALL AROUND
4X (1.45)
0.07 MAX ALL AROUND
(1.45)
(2)
PKG
4X (2)
(R0.05) TYP 5X ( 1.2)
1
(1.7) TYP
SOLDER MASK OPENING, TYP
(6.8)
5
FULL R TYP
NON-SOLDER MASK DEFINED
SCALE:12X
LAND PATTERN
NDH0005D
KTT0005B
BOTTOM SIDE OF PACKAG
TS5B (Rev D)
NEB0005B
以上是“奥伟斯科技”分享的产品信息,如果您需要订购此款物料,请查看我们的官网与我们联系,非常感谢您的关注与支持!奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片、低功耗单片机、马达驱动芯片、显示驱动芯片、刷卡芯片、时针芯片、存储芯片、语音芯片、低压MOS管、TVS二极管;TI高压三端稳压器:LM2575HVSX-12 LM2575HVS-ADJ LM2575HVT-5.0 LM2575HVT-ADJ;LM2576HVR-12、LM2576HVSX-12、LM2576HVS-ADJ LM2576HVR-12、LM2576HVT;AUK畅销型号:KMK1350F、SMK1350F、FQPF13N50C、13N50、KMK830F、SMK830F、IRF830PBF、KMK0870F、SMK0870F、8N70、KC5344SCY、2SC5344SY、KA1981SY、2SA1981SY、2SA1981S-Y SRC1203S、KRC1203S、KC5344SCY、2SC5344SY、2SC5344S-Y、STB1132Y、STB1132-Y STD1664Y、STD1664-Y、SBT2222A、KBT2222AC、SBT2907A、KBT2907AC、STB3904CPF、SBT3906CPF、SDS2838、SDS511C、SDS7000、SDS7000F、SBT3906 、SMK0460D、SMK0270I、 SMK0260I、SMK0260F、SMK0460F、SMK0260F、SMK0870F、SMK830F、SMK1350F、SMK0780F、SMK730F、中微爱芯遥控编码芯片、可编程遥控编码芯片 AIP4910 AIP4911 AIP4901 AIP4902 AIP4903 AIP4904 CD6220 CD6221 CD6222 AIP6920 AIP6921 AIP6922 AIP2240;优势产品未尽详细,欢迎查询!