山东省枣庄市中考数学试卷
参考答案与试题解析
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。 1.下列计算,正确的是( )
A.a2?a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1
【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.
【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D. 【解答】解:A、a2?a2=a4,故此选项错误; B、a2+a2=2a2,故此选项错误; C、(﹣a2)2=a4,故此选项正确; D、(a+1)2=a2+2a+1,故此选项错误; 故选:C.
【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.
2.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )
A.75°36′ B.75°12′ C.74°36′ D.74°12′ 【考点】平行线的性质;度分秒的换算.
DF是∠CDE的角平分线,【分析】过点D作DF⊥AO交OB于点F.根据题意知,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.
第1页(共24页)
【解答】解:过点D作DF⊥AO交OB于点F. ∵入射角等于反射角, ∴∠1=∠3, ∵CD∥OB,
∴∠1=∠2(两直线平行,内错角相等); ∴∠2=∠3(等量代换);
在Rt△DOF中,∠ODF=90°,∠AOB=37°36′, ∴∠2=90°﹣37°36′=52°24′;
∴在△DEF中,∠DEB=180°﹣2∠2=75°12′. 故选B.
【点评】本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.
3.某中学篮球队12名队员的年龄如表: 年龄(岁)人数
13 1
14 5
15 4
16 2
关于这12名队员年龄的年龄,下列说法错误的是( ) A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.8 【考点】极差;加权平均数;中位数;众数.
【分析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案. 【解答】解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意; 极差是:16﹣13=3,故选项B正确,不合题意; 中位数是:14.5,故选项C正确,不合题意;
平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意. 故选:D.
第2页(共24页)
【点评】此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )
A.15° B.17.5° C.20° D.22.5° 【考点】等腰三角形的性质.
【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.
【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4, ∵∠ACE=∠A+∠ABC, 即∠1+∠2=∠3+∠4+∠A, ∴2∠1=2∠3+∠A, ∵∠1=∠3+∠D,
∴∠D=∠A=×30°=15°. 故选A.
【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.
第3页(共24页)
5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为( ) A.5 B.﹣1 C.2 D.﹣5 【考点】根与系数的关系.
【分析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.
【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m, ∴﹣2+m=
,
解得,m=﹣1, 故选B.
【点评】本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.
6.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是( )
A.白 B.红 C.黄 D.黑
【考点】专题:正方体相对两个面上的文字.
【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论. 【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝, ∴涂成绿色一面的对面的颜色是黄色, 故选C.
【点评】本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据 题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.
7.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是( )
第4页(共24页)
A.3 B.4 C.5.5 D.10
【考点】翻折变换(折叠问题).
【分析】过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可. 【解答】解:如图:
过B作BN⊥AC于N,BM⊥AD于M,
∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处, ∴∠C′AB=∠CAB, ∴BN=BM,
∵△ABC的面积等于6,边AC=3, ∴
×AC×BN=6,
∴BN=4, ∴BM=4,
即点B到AD的最短距离是4, ∴BP的长不小于4, 即只有选项A的3不正确, 故选A.
【点评】本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解此题的关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.
8.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )
第5页(共24页)