学习总结
学习了集成电路制造工艺的课程,了解和掌握了很多关于集成电路的设计与具体细节的知识,在此总结一下最近学习的情况和心得。
通过整体学习掌握了微电子工艺的初步理论知识和制作细节,所谓微电子工艺,就是指用半导体材料制作微电子产品的方法、原理、技术。不同产品的制作工艺不同,但可将制作工艺分解为多个基本相同的小单元,再将不同的小单元按需要顺序排列组合来实现。
具体以一个最常用的芯片设计为例,首先将大自然中仅次于氧含量的硅做成硅棒,然后切片,再经过20到30步工艺步骤做成硅片然后再对做好的芯片进行测试,再经过封装成成品,完了再经过成品测试找出不符合标准的芯片,再包装到上市出售。
英特尔公司的联合创始人之一戈登摩尔提出了一个很著名的论断:即“摩尔定律”,集成电路上能被集成的晶体管数目,将会以每18个月翻一番的速度稳定增长。该论断到目前为之还在适用,但到以后会不会出现如此的情况就很难下定论,因为随着工艺的成熟,技术的进步,加工水平的提升,该速度会不会面临艰难的挑战也是一个谜。
在本次学习过程中,首先了解了硅作为集成电路的基础性材料,主要是由于它有一下几个特点:原料充分;硅晶体表面易于生长稳定的氧化层,这对于保护硅表面器件或电路的结构、性质很重要;重量轻,密度只有2.33g/cm3;热学特性好,线热膨胀系数小,2.5*10-6/℃ ,热导率高,1.50W/cm·℃;单晶圆片的缺陷少,直径大,工艺性能好;机械性能良好。
在掌握了硅的优点之后,熟悉了单晶硅的生长。采用熔体生长法制备单晶硅棒:多晶硅→熔体硅→单晶硅棒;按制备时有无使用坩埚又分为两类:有坩埚的:直拉法、磁控直拉法; 无坩埚的:悬浮区熔法。
单晶硅的生长原理为:固体状态下原子的排列方式有无规则排列的非晶态,也可以成为规则排列的晶体。决定因素有三方面: 物质的本质:原子以哪种方式结合使系统吉布斯自由能更低。温度高时原子活动能力强,排列紊乱能量低,而低温下按特定方式排列结合能高可降低其总能量----这是热力学的基本原则。
熔融液体的粘度:粘度表征流体中发生相对运动的阻力,随温度降低,粘度不断增加,在到达结晶转变温度前。粘度增加到能阻止在重力作用物质发生流动时,即可以保持固定的形状,这时物质已经凝固,不能发生结晶。
熔融液体的冷却速度:冷却速度快,到达结晶温度原子来不及重新排列就降到更低温度,最终到室温时难以重组合成晶体,可以将无规则排列固定下来。 然后,在单晶硅里进行掺杂,主要有:液相掺杂,气相掺杂,中子辐射掺杂三类。液相掺杂可直接在坩埚内加入杂质元素制造特定电阻率圆片。利用杂质的扩散机理,在用区熔法拉制硅单晶的过程中加入气相杂质氛围,并通过控制杂质气体的杂质含量和气体流量的方法控制单晶的电阻率。在单晶炉内通入的惰性气体中加入一定量的含掺杂元素的杂质气体。在杂质气氛下,蒸发常数小的杂质部分溶入熔体硅中,掺入单晶体内。无坩埚生长单晶法,一般采用气相掺杂方法。NTD法是一种内掺杂方法,所用原始硅单晶是不掺杂的本征单晶,将它放在原子反应堆中进行中子辐照,使硅中的天然同位素30Si俘获中子后产生不稳定的31Si,经过半衰期(2.62h)的β衰变生产不稳定的31P,从而实现对硅单晶的磷(n型)掺杂。
在微电子工艺中,外延(epitaxy)是指在单晶衬底上,用物理的或化学的方法,按衬底晶向排列(生长)单晶膜的工艺过程。新排列的晶体称为外延层,有外延层的硅片称为(硅)外延片,与先前描述的单晶生长不同在于外延生长温度低于熔点许多,外延是在晶体上生长晶体,生长出的晶体的晶向与衬底晶向相同,掺杂类型、电阻率可不同。n/n+,n/p,GaAs/Si。
使用外延工艺主要有一下两个优点:高的集电结击穿电压和低的集电极串联电阻,利用外延技术的pn结隔离是早期双极型集成电路常采用的电隔离方法。
外延工艺常用的硅源:四氯化硅 SiCl4(sil.tet),是应用最广泛,也是研究最多的硅源---主要应用于传统外延工艺;三氯硅烷 SiHCl3(TCS),和 SiCl4类似但温度有所降低----常规外延生长;二氯硅烷SiH2Cl2( DCS) ----更低温度,选择外延;硅烷SiH4,更适应薄外延层和低温生长要求,得到广泛应用;新硅源:二硅烷Si2H6-----低温外延。
二氧化硅是微电子工艺中采用最多的介质薄膜。二氧化硅薄膜的制备方法有:热氧化、 化学气相淀积、物理法淀积、阳极氧化等。热氧化是最常用的氧化方法,需要消耗硅衬底,是一种本征氧化法。
在掺杂的步骤中,包含了热扩散和离子注入两种方法。由于热扩散成本较低容易实现在以前的制作工艺中经常采用,而离子注入方法比热扩散更加精确,实现掺杂的效果比掺杂好,但是离子注入的一个最大劣势是成本高,就单个离子注入机比较昂贵,配合其他的设备整个成本比较高。下面就分别说一下热扩散和离子注入的方法。
扩散是微电子工艺中最基本的工艺之一,是在约1000℃的高温、p型或n型杂质气氛中,使杂质向衬底硅片的确定区域内扩散,达到一定浓度,实现半导体定域、定量掺杂的一种工艺方法,也称为热扩散。目的是通过定域、定量扩散掺杂改变半导体导电类型,电阻率,或形成PN结。
固相扩散是通过微观粒子一系列随机跳跃来实现的,这些跳跃在整个三维方向进行,主要有三种方式:间隙式扩散、替位式扩散、间隙—替位式扩散。扩散工艺是要将具有电活性的杂质,在一定温度,以一定速率扩散到衬底硅的特定位置,得到所需的掺杂浓度以及掺杂类型。主要有两种方式:恒定表面源扩散和限定表面源扩散。
所谓离子注入,就是离化后的原子在强电场的加速作用下,注射进入靶材料的表层,以改变这种材料表层的物理或化学性质。基本过程为:将某种元素的原子或携带该元素的分子经离化变成带电的离子,在强电场中加速,获得较高的动能。注入材料表层(靶)以改变这种材料表层的物理或化学性质。
离子注入的特点:各种杂质浓度分布与注入浓度可通过精确控制掺杂剂量(1011-1017 cm-2)和能量(5-500 keV)来达到;同一平面上杂质掺杂分布非常均匀(±1% variation across an 8’’ wafer);非平衡过程,不受固溶度限制,可做到浅结低浓度 或深结高浓度;注入元素通过质量分析器选取,纯度高,能量单一;低温过程(因此可用多种材料作掩膜,如金属、光刻胶、介质);避免了高温过程引起的热扩散;易于实现对化合物半导体的掺杂;横向效应比气固相扩散小得多,有利于器件尺寸的缩小;可防止玷污,自由度大;会产生缺陷,甚至非晶化,必须经高温退火加以改进;设备相对复杂、相对昂贵(尤其是超低能量离子注入机);有不安全因素,如高压、有毒气体。
离子注入和热扩散的不同之处是,离子注入还需进行退火处理,因为进行了离子注入时可能将排列合理的原子给替换或是排挤的不在其原来的位置了,所以