好文档 - 专业文书写作范文服务资料分享网站

天津大学-第五版-物理化学上册习题答案

天下 分享 时间: 加入收藏 我要投稿 点赞

T?50K?H??TnCp,mdT?nCp,m(T?50K?T)7 ?nCp,m?(?50K)??5??8.3145?50??7275J??7.275kJ2

Q??H??7.275kJW??U?Q??5.196kJ?(?7.725kJ)?2.079kJ

3

2-10 2mol 某理想气体,CP,m?7R。由始态100 kPa,50 dm,先恒容加热使压力升高至200

2kPa,再恒压泠却使体积缩小至25 dm。求整个过程的W,Q,△H 和△U。 解:整个过程示意如下:

3

2mol2mol2molT1T2T3W21?0 ?W??????100kPa200kPa200kPa50dm350dm325dm3

p2V2200?103?50?10?3p1V1100?103?50?10?3 T1???300.70KT2???601.4K

nR2?8.3145nR2?8.3145p3V3200?103?25?10?3T3???300.70K

nR2?8.3145W2??p2?(V3?V1)??200?103?(25?50)?10?3?5000J?5.00kJ W1?0; W2?5.00kJ; W?W1?W2?5.00kJ

? T1?T3?300.70K; ? ?U?0, ?H?0

? ?U?0, Q?-W?-5.00kJ

3

2-11 4 mol 某理想气体,CP,m?5R。由始态100 kPa,100 dm,先恒压加热使体积升增大到150

2dm,再恒容加热使压力增大到150kPa。求过程的W,Q,△H 和△U。 解:过程为

3

4mol4mol4molT1T2T3W12?0 ????W???100kPa100kPa150kPa100dm3150dm3150dm3p1V1100?103?100?10?3p2V2100?103?150?10?3T1???300.70K; T2???451.02K

nR4?8.3145nR4?8.3145p3V3150?103?150?10?3T3???676.53K

nR4?8.3145W1??p1?(V3?V1)??100?103?(150?100)?10?3??5000J??5.00kJ W2?0; W1??5.00kJ; W?W1?W2??5.00kJ

T3T33?U??nCV,mdT??n(Cp,m?R)dT?n?R?(T3?T1)

T1T12 ?4?3?8.314?(676.53?300.70)?18749J?18.75kJ

2请浏览后下载,资料供参考,期待您的好评与关注!

T355?H??nCP,mdT?n?R?(T3?T1)?4??8.314?(676.53?300.70)?31248J?31.25kJ

T122

Q??U?W?18.75kJ?(?5.00kJ)?23.75kJ

2-12 已知CO2(g)的

Cp,m ={26.75+42.258×10-3(T/K)-14.25×10-6(T/K)2} J·mol-1·K-1 求:(1)300K至800K间CO2(g)的Cp,m;

(2)1kg常压下的CO2(g)从300K恒压加热至800K的Q。

解: (1):

?Hm??Cp,mdT

T1T2??800.15K300.15K{26.75?42.258?10?3(T/K)?14.25?10?6(T/K)2}d(T/K)J?mol?1

?22.7kJ?mol-1Cp,m??Hm/?T?(22.7?103)/500J?mol?1?K?1?45.4J?mol?1?K?1

(2):△H=n△Hm=(1×103)÷44.01×22.7 kJ =516 kJ

2-13 已知20 ℃液态乙醇(C2H5OH,l)的体膨胀系数?V?1.12?10?3K?1,等温压缩系数?T?1.11?10?9Pa?1,密度ρ=0.7893 g·cm,摩尔定压热容CP,m?114.30J?mol?1?K?1。求20℃,液态乙醇的CV,m。

解:1mol乙醇的质量M为46.0684g,则 Vm?M/?

=46.0684g·mol÷(0.7893 g·cm)=58.37cm·mol=58.37×10m·mol 由公式(2.4.14)可得:

2CV,m?Cp,m?TVm?V/?T-1

-3

3

-1

-63

-1

-3

?114.30J?mol?1?K?1?293.15K?58.37?10?6m3?mol?1?(1.12?10?3K?1)2?1.11?10?9Pa?1 ?114.30J?mol?1?K?1?19.337J?mol?1?K?1?94.963J?mol?1?K?12-14 容积为27m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以维持容器内空气的压力恒定。今利用加热器件使容器内的空气由0℃加热至20℃,问需供给容器内的空气多少热量。已知空气的CV,m?20.4J?mol?1?K?1。 假设空气为理想气体,加热过程中容器内空气的温度均匀。

解:假设空气为理想气体 n?pV

RTQ?Qp??H??nCp,mdT?Cp,m?T1T2 ?Cp,mpVR?T2T1dlnT?(CV,mpVdTT1RTpVT2?R)lnRT1T2

?(20.40?8.314)?100000?27293.15lnJ?6589J?6.59kJ8.314273.15请浏览后下载,资料供参考,期待您的好评与关注!

2-15 容积为0.1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4 mol 的Ar(g)及150℃,2mol 的Cu(s)。现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的△H。 已知:Ar(g)和Cu(s)的摩尔定压热容Cp,m分别为20.786J?mol?1?K?1及24.435J?mol?1?K?1,且假设均不随温度而变。

解:用符号A代表Ar(g),B代表Cu(s);因Cu是固体物质,Cp,m≈Cv,m;而

Ar(g):CV,m?(20.786?8.314)J?mol?1?K?1?12.472J?mol?1?K?1 过程恒容、绝热,W=0,QV=△U=0。显然有 ?U??U(A)??U(B)

?n(A)CV,m(A)?T2?T1(A)??n(B)CV,m(B)?T2?T1(B)??0得

T2? ?n(A)CV,m(A)T1(A)?n(B)CV,m(B)T1(B)n(A)CV,m(A)?n(B)CV,m(B)4?12.472?273.15?2?24.435?423.15K?347.38K4?12.472?2?24.435

所以,t=347.38-273.15=74.23℃

?H??H(A)??H(B)

?n(A)Cp,m(A)?T2?T1(A)??n(B)Cp,m(B)?T2?T1(B)??H?4?20.786?(347.38?273.15)J?2?24.435?(347.38?423.15)J

?6172J?3703J?2469J?2.47kJ2-16水煤气发生炉出口的水煤气温度是1100℃,其中CO(g)及H2(g)的体积分数各为0.50。若每小时有300kg水煤气有1100℃泠却到100℃,并用所回收的热来加热水,使水温有25℃升高到75℃。试求每小时生产热水的质量。

CO(g)和H2(g)的摩尔定压热容Cp,m与温度的函数关系查本书附录,水(H2O,l)的比定压热容cp=4.184J?g?1?K?1。

解:已知 MH?2.016, MCO?28.01, yH?yCO?0.5

22水煤气的平均摩尔质量

M?yH2MH2?yCOMCO?0.5?(2.016?28.01)?15.013

300?103300kg水煤气的物质的量 n?mol?19983mol

15.013由附录八查得:273K—3800K的温度范围内

Cp,m(H2)?26.88J?mol?1?K?1?4.347?10?3J?mol?1?K?2T?0.3265?10?6J?mol?1?K?3T2 Cp,m(CO)?26.537J?mol?1?K?1?7.6831?10?3J?mol?1?K?2T?1.172?10?6J?mol?1?K?3T2 设水煤气是理想气体混合物,其摩尔热容为

Cp,m(mix)??yBCp,m(B)?0.5?(26.88?26.537)J?mol?1?K?1B ?0.5?(4.347?7.6831)?10?3J?mol?1?K?2T ?0.5?(0.3265?1.172)?10?6J?mol?1?K?3T2故有

请浏览后下载,资料供参考,期待您的好评与关注!

Cp,m(mix)?26.7085J?mol?1?K?1?6.01505?10?3J?mol?1?K?2T ?0.74925?10?6J?mol?1?K?3T2得 Qp,m??Hm??Qp??373.15K1373.15K373.15K1373.15K?1Cp,m(mix)dT

?26.7085J?mol?K?1 ?6.0151?10?3J?mol?1?K?2T?0.74925?10?6J?mol?1?K?3T2dT? = 26.7085×(373.15-1373.15)J?mol?1

+1×6.0151×(373.15-1373.15)×10J?mol?1

22

2

-3

-1×0.74925×(373.15-1373.15)×10J?mol?1 33

3

-6

= -26708.5J?mol?1-5252.08J?mol?1+633.66J?mol?1

=31327J?mol?1=31.327kJ?mol?1 19983×31.327=626007kJ

m??QpCp,kg水626007?105?kg?2992387g?2992.387kg?2.99?103kg ??t4.184?(75?25) 2-17 单原子理想气体A与双原子理想气体B的混合物共5mol,摩尔分数yB=0.4,始态温度T1=400 K,压力p1=200 kPa。今该混合气体绝热反抗恒外压p=100 kPa膨胀到平衡态。求末态温度T2及过程的W,△U,△H。

解:先求双原子理想气体B的物质的量:n(B)=yB×n=0.4×5 mol=2mol;则 单原子理想气体A的物质的量:n(A)=(5-2)mol =3mol

单原子理想气体A的CV,m?3R,双原子理想气体B的CV,m?5R

22过程绝热,Q=0,则 △U=W

n(A)CV,m(A)(T2?T1)?n(B)CV,m(B)(T2?T1)??pamb(V2?V1)

?nRT2nRT1?35?3?R(T2?T1)?2?R(T2?T1)??pamb???p?22p1??amb4.5?(T2?T1)?5?(T2?T1)??nT2?n?(pamb/p1)T1??5T2?5?0.5T1

于是有 14.5T2=12T1=12×400K

得 T2=331.03K

V2?nRT2/p2?nRT2/pabm?5?8.314?331.03?100000m?3?0.13761m?3

V1?nRT1/p1?5?8.314?400?200000m?3?0.08314m?3

?U?W??pamb(V2?V1)??100?103?(0.13761?0.08314)J??5.447kJ

请浏览后下载,资料供参考,期待您的好评与关注!

?H??U??(pV)??U?(p2V2?p1V1) ?-5447J?(100?103?0.13761?200?103?0.08314)J ??5447J?2867J??8314J??8.314kJ 2-18 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol,0℃的单原子理想气

体A及5mol ,100℃的双原子理想气体B,两气体的压力均为100 kPa 。活塞外的压力维持 100kPa不变。

今将容器内的绝热隔板撤去,使两种气体混合达到平衡态。求末态温度T及过程的W,△U。

解:单原子理想气体A的Cp,m?5R,双原子理想气体B的Cp,m?7R

22因活塞外的压力维持 100kPa不变,过程绝热恒压,Q=Qp=△H=0,于是有

n(A)Cp,m(A)(T?273.15K)?n(B)Cp,m(B)(T?373.15K)?0572?R(T?273.15K)?5?R(T?373.15K)?0225?(T?273.15K)?17.5?(T?373.15K)?0

于是有 22.5T=7895.875K 得 T=350.93K ?U?n(A)CV,m(A)(T?273.15K)?n(B)CV,m(B)(T?373.15K)3?8.31455?8.3145?(350.93?273.15)J?5??(350.93?373.15)J 22 ?1940.1J-2309.4?-369.3J?W ?2?2-19在一带活塞的绝热容器中有一固定绝热隔板,隔板活塞一侧为2mol,0℃的单原子理想气体A,压力与恒定的环境压力相等;隔板的另一侧为6mol ,100℃的双原子理想气体B,其体积恒定。

今将绝热隔板的绝热层去掉使之变成导热隔板,求系统达平衡时的T及过程的W,△U。

解:过程绝热,Q=0,△U=W,又因导热隔板是固定的,双原子理想气体B体积始终恒定,所以双原子理想气体B不作膨胀功,仅将热量传给单原子理想气体A,使A气体得热膨胀作体积功,因此,W=WA,故有

△U=W=WA

n(A)CV,m(A)(T?273.15K)?n(B)CV,m(B)(T?373.15K)??pamb(VA,2?VA,1)2?35R(T?273.15K)?6?R(T?373.15K)22 ??pamb?(2RT/pamb)?(2R?273.15K/pamb?

3?(T?273.15K)?15?(T?373.15K)??2T?2?273.15K得 20×T=6963K 故 T=348.15K

V2,A?nRT2/pabm?2?8.3145?348.15?100000m?3?0.05789m?3 V1,A?nRT1/pabm?2?8.3145?273.15?100000m?3?0.04542m?3 ?U?W??pamb(V2,A?V1,A)??100?103?(0.05789?0.04542)J??1247J

2-20 已知水(H2O,l)在100℃的饱和蒸气压p=101.325 kPa,在此温度、压力下水的摩尔蒸发焓?vapHm?40.668kJ?mol?1。求在100℃,101.325 kPa 下使1kg水蒸气全部凝结成液体水时的Q,W,△U及△H。设水蒸气适用理想气体状态方程。

请浏览后下载,资料供参考,期待您的好评与关注!

s

天津大学-第五版-物理化学上册习题答案

T?50K?H??TnCp,mdT?nCp,m(T?50K?T)7?nCp,m?(?50K)??5??8.3145?50??7275J??7.275kJ2Q??H??7.275kJW??U?Q??5.196kJ?(?7.725kJ)?2.079kJ32-102mol某理想气体,CP,m?7R。由始态100kP
推荐度:
点击下载文档文档为doc格式
8n28u9dbax0vngk58yua7wp9920csk00zwl
领取福利

微信扫码领取福利

微信扫码分享