?x1?1?x22?x2?x2?与原方程组同解方程组为:?1?x4?x3?2?x?x4?4?1??1??0?2???1??0??0??1???,?2???,特解为:?0??1?,
?0??1??2??????0??0??1??? ,其导出组的解系为:
?1??x1??1??0?2?????1??0?通解为:?x2?,其中k1,k2为任意实数。 ?0???0?k1?1?k2?2??1??k1???k2???x3??0??1?2????????x????0???1??4??0?20 矩阵的特征值,相似矩阵(存在n阶可逆矩阵C,使得CAC?B,则称矩阵A与B相似,记为A~B,C为相似变换矩阵),矩阵相似对角化
① n阶方阵A可对角化?A有n个线性无关的特征向量。② 若n阶方阵A有n个互不相等的特征根,则n阶方阵A一定可对角化,反之则不一定。
?1n阶矩阵A可对角化?⑴A有n个线性无关的特征向量, ⑵对A的每一个ki重特征根
?i,有r(?iI?A)?n?ki,⑶对A的每一个ki重特征根?i,(?iI?A)X?0的基础解系由ki
个向量组成。
矩阵对角化的步骤:
⑴求矩阵A的全部特征根?1,?2,...,?n; ⑵对不同的?i,求(?iI?A)X?0的基础解系;
⑶若能求出n个线性无关的特征向量,则以这些特征向量为列向量,构成可逆矩阵
p???1?2...?n???1??????,其中,则有?12PAP????????n????1,?2,...,?n要和
?1,?2,...,?n对应。
60??4??例 判定矩阵A???3?50?是否可以对角化,若能,写出相应的P,?
??3?61???
例 设3阶方阵A的特征根为:1??1,?2?0,?3??1;对应的特征向量依次为:
?1??1???1?,求A.
?,????1?,????1??1??223????????1??1??1??????? 解:因A的特征根为:1故取??1,?2?0,?3??1;
?1?,而?1,?2,?3?????0???1????11?1?是依次对应的特征向量,所以取:,则?1?1??C??2C?(?1,?2,?3)??2?1?1???1??111????2因为A~?011?? 012?3?12??,所以有C?1AC??,即:
?11?1??1??011???111??010? ?1?????11??A?C?C??2?1?1??0???202??????111?????113??212?1???????22?相似矩阵的应用----求矩阵的高次幂
向量的内积,向量的正交性,施密特正交化法
?1??0??1??,a??1?,a??1?规范正交化。 例 用施密特正交化方法将向量组A:
a1??02??3?????1??1??0????????0??1???1? 解:取b1?a1;b?a?(b1,a2)a??1??1?0??1?2?;
22(b1,b1)1??2??2???1??1??1???????
?1??1?(b,a)(b,a)??1?0??b3?a3?(b1,b3)b1?(b2,b3)b2??1??2??1122?0??1???????1??1?21??2?? 21?3?1??3?2??1??1????2??2??3??1????3? 2???1?b3?1?4?3??3?3????1?2?3???????3? 再将其标准化:
1??1???2?, ??b1?1?0???0?e2?2??1??1?????2?e1?1b11b2?1???1???2??6????2?,1e3?b2??1??3?3?2?1??1???6??2??1b3实对称矩阵的对角化
?1?22?T例 A???24?4?,求正交阵Q,使得QAQ??.
???2?44?????1解:?I?A?2?24??2(??9)?0??1??2?0,?3?9
2?2??44??4当?1??2?0时,解方程组?0I?A?x?0,
??12?2??r?1?22??2???2?1????????2?44?000,基础解系为?1?1,?2?0 ??r?2r????????24?4?r32?2r11?000??0??1?????????当?3?9时,解方程组?9I?A?x?0,
?1?82?2?r?r???12??8?254??1r??245?21??2????522451?????2?1210????1r?22??1?2r?8r1821?????基础解系为?2?, ?2???0?18?18???011???5r3?2r1?3???1?r1?r2?092?05?9?r3?900??1?r2???????????????2??2???5???2??2?????将?1,?2正交化,令?1?1,?,????44????21?? ???2??2??1??0???1?????0???1,?1??1?5?0??5???????1???????2??2??1??5??1???????2??3???35??2???1???1?,单位化:?21?4?,?31???2?: e1?1?1?e???e????1???23????5???3?15???93523?0???1??3??????02???2?5?5???????????3??35???????令?Q??????25150?23541??0??3?T,则有QAQ??2????3??2?3??35535??0?
9??二次型,矩阵的合同(存在n阶非奇异矩阵C,使得CAC?B,则矩阵A合同于矩阵B,记为: A~B)任何一个二次型都可以通过非退化线性变换变成标准形。二次型变成标准形有配方法、合同线性变换(初等变换法)和正交化方法。 例 用配方法化二次型x1x2
T?x1x3?x2x3为标准形,并求出相应的满秩线性变换。
?x1?y1?y2?解:令?x2?y1?y2,则原二次型化为:
?x?y3?322222222 f?y1?y2?2y1y3?y1?2y1y3?y3?y3?y2?(y1?y3)2?y2?y3
?z1?y1?y3?y1?z1?z3??y2z2令?z2?,??y2?
?z??y?yz33?3?3?y1??10?1??z1??????z?,则
0即y2?01?????2??y??001??z???3??3??所以,
?x1??110??y1??110??10?1??z1??x???1?10??y???1?10??010??z??2????2??????2? ?x??001??y??001??001??z???3??????3??3???x1??11?1??z1??11?1? 即?x???1?1?1??z?,令C??1?1?1?,C??2?0,故在满秩线性
?2????2????x??001??z????3??3???001???x1?z1?z2?z3?222变换x?Cz,即?x2?z1?z2?z3,则原二次型化为标准形:f?z1?z2?z3
?x?z3?3?A????用合同线性变换(矩阵的初等变换)法化二次型为标准形,?????
?I??C? 例:求在合同线性变换下,化二次型2x1x2?2x1x3?2x2x3为标准形。
?011??? 解:二次型2x1x2?2x1x3?2x2x3的矩阵A?101 ????110???20?2??1?1??21?1?200?c2?c1?2??10?1?c3?c1?2??0??11?1??2?00??0??1?A??1?????I??1?0??0?11??1??01??1?210?c?c?12?00??1?110????001???11??2??01??1?210?r?r?12?00??1?110????001???101010?200???1?0??0?2???2?r?1r?00?212?1??1?r?r?1?231???11?1???2??1??000??0???2?, ???1???1??1??
?1?12?1所以C??12?00??x1??1?12???1?x2???12?x??00?3??用正交化方法 例 求一正交变换x?1???1?,C?1?0,在合同线性变换下x?Cz,即1???1??y1???, 原二次型化为标准形:f?2y2?1y2?2y2 ?1??y21322???y3??1????Cy,化二次型f?x1x2?x1x3?x2x3为标准形。
1??0122?1? 解:二次型的矩阵为:1A??202??110??22??由
?12?I?A??121?2??121?211?r3?r2?22??01?211??c3?c2?2211?????022??212?12?1?1???2??01 2?11??1??1???????1???????1??0
???2?2??22?求得A的特征根为:?1 当?1?1,?2??3??1, 2?1时,解齐次方程组?I?A?X?0,
0?10??1?10? 000??1111????1??01??0?11??????11??012222??1???r2?r1??r3?r222??r1?r20332???11?10???0?04?10?2?01?2????01244r2???r?r0000??3?31?1133??2???10?0???????0??244?2????x1????x2??x??3当?2x3x3,得其基础解系为: x3?1?????1??; ?1???????I?A时,解齐次方程组??3??1??X?0 21?2