最新资料欢迎阅读 相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升 1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米 注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
【单位换算】 大单位 小单位 小单位 大单位
长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米
1米=10分米=100厘米=1000毫米 (相邻单位进率10) 面积单位:1平方千米=100公顷 1平方米=100平方分米 1平方分米=100平方厘米 1公顷=10000平方米 (平方相邻单位进率100)
质量单位:1吨=1000千克 1千克=1000克 人 民 币:1元=10角 1角=10分 1元=100分
11
最新资料欢迎阅读 四 分数的意义和性质
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。 2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数 15、两个数互质的特殊判断方法: ①1和任何大于1的自然数互质。 ②2和任何奇数都是互质数。 ③相邻的两个自然数是互质数。 ④相邻的两个奇数互质。 ⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。 16、求最大公因数和最小公倍数的方法:
① 倍数关系:如果两个数呈倍数关系其中较小的数就是最大公因数,较大的数就是最小公倍数。
② 互质关系:如果两个数互质,最大公因数就是1,最小公倍数就是它们两个的乘积。
③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
12
最新资料欢迎阅读
五 分数的加法和减法
(1) 同分母分数加、减法 (分母不变,分子相加减) 1、分数数的加法和减法(2) 异分母分数加、减法 (通分后再加减)
(3) 分数加减混合运算:同整数。 (4) 结果要是最简分数
2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。能约分的要约分。 附:具体解释
(一)同分母分数加、减法 1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。 2、计算的结果,能约分的要约成最简分数。 (二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。 2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
(三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相
13
最新资料欢迎阅读 同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。 2、整数加法的交换律、结合律对分数加法同样适用。
六 统计与数学广角
众数 一组数据中出现次数最多的数叫众数。 众数能够反映一组数据的集中情况。
统计 在一组数据中,众数可能不止一个,也可能没有众数。 复式折线统计图
综合应用 打电话的最优方案
1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
众数能够反映一组数据的集中情况。
在一组数据中,众数可能不止一个,也可能没有众数。 2、中位数:(1)按大小排列;
(2)如果数据的个数是单数即是奇数,那么最中间的那个数就是中位数;
(3)如果数据的个数是双数即是偶数,那么最中间的那两个数的平均数就是中位数。
3、平均数的求法:总数÷总份数=平均数 4、一组数据的一般水平:
14
最新资料欢迎阅读 (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。
(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。
(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。
4、平均数、中位数和众数的联系与区别: ① 平均数:
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
容易受极端数据的影响,表示一组数据的平均情况。 ② 中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
它不受极端数据的影响,表示一组数据的一般情况。 ③ 众数:
在一组数据中出现次数最多的数叫做这组数据的众数。 它不受极端数据的影响,表示一组数据的集中情况。 5、统计图:我们学过——条形统计图、复式折线统计图。 条形统计图优点:条形统计图能形象地反映出数量的多少。 折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
15