初数学知识点归总结(精华版)
中纳
精品文档
第一章 有理数
考点一、实数的概念及分类 (3分)
1、实数的分类 正有理数
有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数
无理数 无限不循环小数 负无理数
π2、无理数:7,32,+8,sin60o。
3第二章 整式的加减
考点一、整式的有关概念 (3分)
1、单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如
113?4a2b,这种表示就是错误的,应写成?a2b。一个单项式中,所有字母的指数的和叫33做这个单项式的次数。如?5a3b2c是6次单项式。 考点二、多项式 (11分)
1、多项式
几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项
收集于网络,如有侵权请联系管理员删除
精品文档
所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
第三章 一元一次方程
考点一、一元一次方程的概念 (6分)
1、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方
0x为未知数,a?0)程ax?b?(叫做一元一次方程的标准形式,a是未知数x的系数,b是常
数项。
第四章 图形的初步认识
考点一、直线、射线和线段 (3分) 1、点和直线的位置关系有线面两种:
①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 2、线段的性质
(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。 3、线段垂直平分线的性质定理及逆定理
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
收集于网络,如有侵权请联系管理员删除
精品文档
考点二、角 (3分)
1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。 把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。 1°=60’=60”
2、角的平分线及其性质
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角的平分线有下面的性质定理:
(1)角平分线上的点到这个角的两边的距离相等。 (2)到一个角的两边距离相等的点在这个角的平分线上。
第五章 相交线与平行线
考点一、平行线 (3~8分) 1、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 2、平行线的判定
平行线的判定公理:同位角相等,两直线平行。
平行线的两条判定定理:(1)内错角相等,两直线平行。(2)同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。(2)垂直于同一条直线的两直线平行。(3)平行线的定义。
收集于网络,如有侵权请联系管理员删除
精品文档
3、平行线的性质(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。 考点二、命题、定理、证明 (3~8分)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。 考点三、投影与视图 (3分) 1、投影
投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。 平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。 中心投影:由同一点发出的光线所形成的投影称为中心投影。 2、视图
物体的三视图特指主视图、俯视图、左视图。
第六章 实 数
考点一、实数的倒数、相反数和绝对值 (3分)
1、相反数
a+b=0,a=—b,反之亦成立。
2、绝对值:一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
考点二、平方根、算数平方根和立方根 (3—10分)
1、平方根
收集于网络,如有侵权请联系管理员删除