《数学模型 第三版 》
学习笔记
Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
《数学模型(第三版)》学习笔记
写在开始
---小康社会欢迎您
今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是. 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:(一) “实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;(二) 模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了; (三) 用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要
性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。
从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流—
—毕竟自己领会很有限。
也可以作为未读过、准备读这本书的同学的参考~ ——Tony Sun July 2012, TJU
(目前已更新:全12章)
第1章 建立数学模型关键词:数学模型 意义 特点
第1章是引入的一章,对数学模型的意义来源,做了很好的解释。其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。但通常,数学模型有严谨的特点,而且我们可以根据建模实际需要改变模型,成本也比较低;同时数学模型手段之一计算机模拟也有很好的效果。
椅子在不平的地面上放稳、商人安全过河、预报人口增长这3个熟悉的例子,用简单的数学进行描述、建模分析,给数学模型一个最好的诠释:用数学语言描述事物、现象——往往增添了说服力。
第2章 初等模型关键词:初等数学 简化技巧 思想
这一章顾名思义,是一些用“初等”数学知识建立、求解的模型,虽然数学知识比较易懂,但是其中的巧妙思想确实十分重要的。
如何把问题做恰当的简化,到简单的数学工具能够表示、求解的程度,本章做出了很好的例子,同时分析也很精彩。
节公平席位分配,通过定义不公平程度等衡量标准,确立目标,提出Q值法。有意思的是,在考虑是否存在一个理论上公平的分配方法时,根据所提出的4个(毋庸置疑的)公理,得出的结论却是:不存在满足上述公理的分配方法。这种类似情况在本书中后面的例子也出现过。这给我们什么启示呢有些问题和工作,比如公平席位的分配,日常中是一定要做的,就算不能达到绝对公平也要分配,但一旦证明不存在理论上公平的分配方法时,我们还有分配的意义吗答案不一;在这个例子中,固然是有意义的,我们自然转而寻求一个相对公平的分配方法,抑或,就是
回溯查看提出的“公理”是不是那么的“公理”,看能否通过删改公理来取得更公平方案。
录像机计数器、双层玻璃功效、刹车距离等模型,均是用日常现象、基础的物理知识和巧妙简化进行的建模分析,这里每个例子中的分析,求解后的解释很重要——它们是整个模型的关键,阐述现象。
实物交换——是后面经济学模型的雏形,无差别曲线的图形方法,确定这种曲线实际中要收集大量的数据;核军备竞赛一节,也是一个动态的变化过程,基本全是用曲线进行分析的——这里给我们一个思想,得出表达式后,许多时候我们只关注曲线的形状、趋势,因此作图分析是很好的方法,图中可以给我们很多信息(交点,截距,极限值……),而这些信息都一一对应着它们的实际意义;有些即使没有明显的含义,但也很可能为接下来的铺垫、预测作下铺垫。
量纲分析与无量纲化——是另一种重要的求解方法,大致来说思想就是:仅知道变量之间的制约关系(正/负相关),系数、阶数均未知,即只能得出表达式的“形式”,要我们通过“量纲齐次性”(等式两端必须保持量纲的一致)来确定具体的表达式。这是与按理论推导建模并列的另一种方法,这一节用单摆、抛射等物理问题很好地诠释了这种方法的强大。关键:恰当地选择特征尺度,