好文档 - 专业文书写作范文服务资料分享网站

人教全部整合版初级中学数学知识点归纳(全面)

天下 分享 时间: 加入收藏 我要投稿 点赞

* *

判定2:内错角相等,两直线平行。 判定3:同旁内角互补,两直线平行。 第六章 实数

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作a。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。 5.实数的分类

a?b?ab?a?0,b?0?aa?(a?0,b?0)

bb??自然数(0,1,2,3?)?整数?? ??负整数(?1,?2,?3?)???12?(整数、有限小数、无限循环小数)?有理数?正分数(,?)?23?分数(小数)???实数?12??负分数(?,??) ??23???第七?章 平面直角坐标系

?无理数?正有理数(无限不循环小数)???负有理数?一.知识框架

* *

二.知识概念

1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。 注意:坐标轴上的点不在任何一个象限内。

第八章 二元一次方程组 一.知识结构图

* *

二、知识概念

1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。 6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消

* *

元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

第九章 不等式与不等式组 一.知识框架

二、知识概念

1.用符号“<”“>”“≤ ”“≥”“≠”表示大小关系的式子叫做不等式。 2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

* *

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 7.不等式的性质:

不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子), 不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

第十章 数据的收集、整理与描述 一.知识框架 全面调查 抽样调查 收集数据 整理数据 描述数据 分析数据 得出结论 二.知识概念

1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3.总体:要考察的全体对象称为总体。

人教全部整合版初级中学数学知识点归纳(全面)

**判定2:内错角相等,两直线平行。判定3:同旁内角互补,两直线平行。第六章实数1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作a。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
推荐度:
点击下载文档文档为doc格式
8lwbs0icrx8uhsm07tfq670et7c1ze0178c
领取福利

微信扫码领取福利

微信扫码分享