好文档 - 专业文书写作范文服务资料分享网站

数字推理类题型分析及解题技巧总结

天下 分享 时间: 加入收藏 我要投稿 点赞

【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。对于这种题,考生应熟练掌握一些数字的平方得数。如: 10的平方=100 11的平方=121 12的平方=144 13的平方=169 14的平方=196 15的平方=225

【例题13】66,83,102,123,() A、144;B、145;C、146;D、147

【解答】答案为C。这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12的平方再加2,得146。这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了。

七、求立方数及其变式 【例题14】1,8,27,() A、36;B、64;C、72;D、81

【解答】答案为B。各项分别是1,2,3,4的立方,故括号内应填的数字是64。

【例题15】0,6,24,60,120,() A、186;B、210;C、220;D、226

【解答】答案为B。这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1的立方减1,第二个数是2的立方减2,第三个数是3的立方减3,第四个数是4的立方减4,依此类推,空格处应为6的立方减6,即210。

八、双重数列

【例题16】257,178,259,173,261,168,263,() A、275;B、279;C、164;D、163

【解答】答案为D。通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,……。也就是说,奇数项的都是大数,而偶数项的都是小数。可以判断,这是两项数列交替排列在一起而形成的一种排列方式。在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找。我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式。而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163。顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化。

两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式。只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了。需要补充说明的是,近年来数字推理题的趋势越来越难,因此,遇到难题时可以先跳过去做其他较容易的题目,等有时间再返回来解答难题。

二、解题技巧

数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助。

1、快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。

2、推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。

3、空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。

4、若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证。常见的排列规律有:

(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);

(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减。 (3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减; 如:2、4、8、16、32、64、()

这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128。 (4)二级等差:相邻数之间的差或比构成了一个等差数列; 如:4、2、2、3、6、15

相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5。

(5)二级等比数列:相邻数之间的差或比构成一个等比数理; 如:0、1、3、7、15、31、()

相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63。 (6)加法规律:前两个数之和等于第三个数,如例题23; (7)减法规律:前两个数之差等于第三个数; 如:5、3、2、1、1、0、1、()

相邻数之差等于第三个数,空缺项应为-1。

(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;

(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含; 如:2、3、10、15、26、35、()

(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列。 如:1、2、6、15、31、()

相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56。

20种数字推理试题解答规律总结

数字推理主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。在实际解题过程中,根据相邻数之间的关系分为两大类: 一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:

1、相邻两个数加、减、乘、除等于第三数

2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数

3、等差数列:数列中各个数字成等差数列

4、二级等差:数列中相邻两个数相减后的差值成等差数列 5、等比数列:数列中相邻两个数的比值相等

6、二级等比:数列中相邻两个数相减后的差值成等比数列 7、前一个数的平方等于第二个数

8、前一个数的平方再加或者减一个常数等于第二个数; 9、前一个数乘一个倍数加减一个常数等于第二个数; 10、隔项数列:数列相隔两项呈现一定规律, 11、全奇、全偶数列 12、排序数列

二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n的平方构成或者是n的平方加减一个常数构成,或者是n的平方加减n构成

2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n

3、数列中每一个数字都是n的倍数加减一个常数。

以上是数字推理的一些基本规律,必须掌握。但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答

第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘

数字推理类题型分析及解题技巧总结

【解答】答案为D。这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1的平方,第二个数字是2的平方,第三个数字是3的平方,第五和第六个数字分别是5、6的平方,所以第四个数字必定是4的平方。对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的。对于这种题,考生应熟练掌握一些数字的平方得数。如:10的平方=10011
推荐度:
点击下载文档文档为doc格式
8lgq07frwx47ty70kclt55mbv23rb100595
领取福利

微信扫码领取福利

微信扫码分享