运筹学本科版答案
【篇一:运筹学课后习题答案】
xt>1.用xj(j=1.2…5)分别代表5中饲料的采购数,线性规划模型: minz?0.2x1?0.7x2?0.4x3?0.3x4?0.8x5st. 3x1?2x2?x3?6x4 +18x5 ?700 x1?0.5x2?0.2x3+2x4?x5 ?30 0.5x1?x2?0.2x3+2x4 ?0.8x5 ?100
2.解:设x1x2x3x4x5x6x表示在第i个时期初开始工作的护士人数,z表示所需的总人数,则
minz?x1?x2?x3?x4?x5?x6st. x1?x6?60 x ?x2?701 x2?x3?60 x3?x4?50 x4?x5?20 x5?x6?30 xj(j?1,2,3,4,5,6)?0
3.解:设用i=1,2,3分别表示商品a,b,c,j=1,2,3分别代表前,中,后舱,xij表示装于j舱的i种商品的数量,z表示总运费收入则:
maxz?1000(x11?x12?x13)?700(x21?x22?x23)?600(x31?x32?x33)st. x11?x12?x13?600 x21?x22?x23?1000 x31?x32?x33?800 1 0x11?5x21?7x31?400 1
0x12?5x22?7x32?5400 1 0x13?5x23?7x33?1500 8x11?6x21?5x31?2000 8x12?6x22?5x32?3000 8x13?6x23?5x33?1500 8x?6x21?5x31 11?0.15 8x12?6x22?5x328x?6x23?5x33 13?0.15
8x12?6x22?5x328x?6x21?5x31 11?0.1
8x13?6x23?5x33 xij?0(i?1,2.3.j?1,2,3) xi(i?1,2.3.4.5.6)?0 5. (1) z = 4 (2)
maxz?x1?x2
st. 6x1?10x2?120 x1?x2?70 5?x1?10 解:如图:由图可得: x?(10,6) ; z * t *
3?x2?8 ?16 *
即该问题具有唯一最优解x ?
(10,6) t
(3) 无可行解 (4)
maxz?5x1?6x2st. 2x1?x2?2 ?2x1?3x2?2 x1,x2?0 如图:
由图知,该问题具有无界解。 6(1)
maxz?3x1?4x2?2x3?5xst. -2x1?x 2 4
?5x 4 ?0x 5 ?0x 6 ?2x 3 ?x 44 4
?x4 ?2
x1?x2?x3?2x -2x1?3x2?x3?x
?2x4 +x5 ?14?x4-x6 ?6 6
(2)
x1,x2,x3,x4,x4,x5,x ?0
maxz?2x1?2x2?3x3?3xst. x1?x 2 3 ?0x 4
?x3?x3 ?4
2x1?x2?x3?x3+x4 ?6 x1,x2,x3,x3,x 4
?0?12 ?8??3? 310 6?40 300 0??
2 0=(p1 p2 p3 p4 p5 p6) ?
0?1??
7.1)系数矩阵a:c6 b1?p1 p 2 3
?20种组合
可b1构成基。 23?8 3 310
???54?;∴00 求b1的基本解, ?12
?8??3? 310 6?40
9????10=?? ?0???