PIO31和PIO30相接;向下拨则与89C51单片机的P30和P31端口相接。于是通过此开关可以进行不同的通信实验,详细连接方式可参见附图2-13。平时此开关向下打,不要影响FPGA的工作。
注意2,由附图2-13可知,单片机89C51的P3和P1口是与FPGA的PIO66-PIO79相接的,而这些端口又与6数码管扫描显示电路连在一起的,所以当要进行6数码管扫描显示实验时,必须拔去右侧的单片机,并安实验电路结构 NO.5,将拨码开关3,拨为使能,这时LCD停止工作。
(15) RS-232串行通讯接口:此接口电路是为单片机与PC机通讯准备的,由此可以使PC机、单片机、FPGA/CPLD三者实现双向通信。当目标板上FPGA/CPLD器件需要直接与PC机进行串行通讯时,可参见附图2-13,和实验电路结构图NO.5,将实验板右侧的开关向上打“TO FPGA”,从而使目标芯片的PIO31和PIO30与RS232口相接,即使RS232的通信接口直接与目标器件FPGA的PIO30/PIO31相接。而当需要使PC机的RS232串行接口与单片机的P3.0和P3.1口相接时,则应将开关向下打“TO MCU”既可(平时不用时也应保持在个位置)。
(16) “AOUT” D/A转换 :利用此电路模块(实验板左下侧),可以完成FPGA/CPLD目标芯片与D/A转换器的接口实验或相应的开发。它们之间的连接方式可参阅“实验电路结构 NO.5” :D/A的模拟信号的输出接口是“AOUT”,示波器可挂接左下角的两个连接端。当使能拨码开关8:“滤波1”时,D/A的模拟输出将获得不同程度的滤波效果 。
注意,进行D/A接口实验时,需打开左侧第2个开关,获得+/-12伏电源,实验结束后关上此电源。 (17) “AIN0”/“AIN1”:外界模拟信号可以分别通过系统板左下侧的两个输入端“AIN0”和“AIN1”进入A/D转换器ADC0809的输入通道IN0和IN1,ADC0809与目标芯片直接相连。通过适当设计,目标芯片可以完成对ADC0809的工作方式确定、输入端口选择、数据采集与处理等所有控制工作,并可通过系统板提供的译码显示电路,将测得的结果显示出来。此项实验首先需参阅第二节的“实验电路结构NO.5”有关0809与目标芯片的接口方式,同时了解系统板上的接插方法以及有关0809工作时序和引脚信号功能方面的资料。
注意:不用0809时,需将左下角的拨码开关的“A/D使能”和“转换结束”打为禁止:向上拨,以避免与其他电路冲突。
ADC0809 A/D转换实验接插方法(如实验电路结构 NO.5图所示):
1. 左下角拨码开关的“A/D使能”和“转换结束”打为使能:向下拨,即将ENABLE(9)与PIO35相接;若向上拨则禁止,即则使ENABLE(9)?0,表示禁止0809工作,使它的所有输出端为高阻态。 2.左下角拨码开关的“转换结束”使能,则使EOC(7)?PIO36,由此可使目标芯片对ADC0809的转换状态进行测控。
(18) VR1/“AIN1”:VR1电位器,通过它可以产生0V~+5V 幅度可调的电压。其输入口是0809的IN1(与外接口AIN1相连,但当AIN1插入外输入插头时,VR1将与IN1自动断开)。若利用VR1产生被测电压,则需使0809的第25脚置高电平,即选择IN1通道,参考“实验电路结构NO.5”。 (19) AIN0的特殊用法 :系统板上设置了一个比较器电路,主要以LM311组成。若与D/A电路相结合,可以将目标器件设计成逐次比较型A/D变换器的控制器件参考“实验电路结构NO.5”。 (20) 系统复位键:此键是系统板上负责监控的微处理器的复位控制键,同时也与接口单片机的复位端相连。因此兼作单片机的复位键。
(21) 下载控制开关 :在系统板的左侧第3个开关。当需要对实验板上的目标芯片下载时必须将开关向上打(即“DLOAD”);而当向下打(LOCK)时,将关闭下载口,这时可以将下载并行线拔下而作它用(这时已经下载进FPGA的文件不会由于下载口线的电平变动而丢失);例如拔下的25芯下载线可以与GWAK30+适配板上的并行接口相接,以完成类似逻辑分析仪方面的实验。
(22)跳线座SPS :短接“T_F”可以使用在系统频率计。频率输入端在主板右侧标有“频率计”处。模式选择为“A”。短接“PIO48”时,信号PIO48可用,如实验电路结构图NO.1中的PIO48。平时应该短路“PIO48”
(23) 目标芯片万能适配座CON1/2 :在目标板的下方有两条80个插针插座(GW48-CK系统),其连接信号如附图1-1B所示,此图为用户对此实验开发系统作二次开发提供了条件。此二座的位置设置方式和各端口的信号定义方式与综合电子设计竞赛开发板GWDVP-B完全兼容!!!
对于GW48-GK/PK系统,此适配座在原来的基础上增加了20个插针,功能大为增强。增加的20插针信号与目标芯片的连接方式可参考“实验电路结构NO.5”和附图2-13。
(24)拨码开关 :拨码开关的详细用法可参考实验电路结构 NO.5图和附图2-13。
(25)ispPAC下载板 :对于GW48-GK系统,其右上角有一块ispPAC模拟EDA器件下载板,可用于模拟EDA实验中对ispPAC10/20/80等器件编程下载用,详细方法请看光盘中《ENA技术实用教程》配套教学软件实验演示部分:“模拟EDA实验演示”的POWER POINT。
(26)拨8X8数码点阵 :在右上角的模拟EDA器件下载板上还附有一块数码点阵显示块,是通用供阳方式,需要16根接插线和两根电源线连接。详细方法请看“实验演示”的POWER POINT。
(27)使用举例: 若通过键SW9选中了“实验电路结构图NO.1”,这时的GW48系统板所具有的接口方式变为:FPGA/CPLD端口PI/O31~28、27~24、23~20和19~16 ,共4组4位二进制I/O端口分别通过一个全译码型的7段译码器输向系统板的7段数码显示器。这样,如果有数据从上述任一组四位输出,就能在数码显示器上显示出相应的数值,其数值对应范围为: FPGA/CPLD输出 数 码 管 显 示 0000 0 0001 1 0010 2 … … 1100 C 1101 D 1110 E 1111 F 端口I/O32~39分别与8个发光二极管D8~D1相连,可作输出显示,高电平亮。还可分别通过键8和键7,发出高低电平输出信号进入端口I/049和48 ;键控输出的高低电平由键前方的发光二极管D16和D15显示,高电平输出为亮。此外,可通过按动键4至键1,分别向FPGA/CPLD的PIO0~PIO15输入4位16进制码。每按一次键将递增1,其序列为1,2,…9,A,…F。注意,对于不同的目标芯片,其引脚的I/O标号数一般是同GW48系统接口电路的“PIO”标号是一致的(这就是引脚标准化),但具体引脚号是不同的,而在逻辑设计中引脚的锁定数必须是该芯片的具体的引脚号。具体对应情况需要参考第3节的引脚对照表。
第二章 GW48系统实验电路结构图
1.实验电路信号资源符号图说明
结合附图2-1,以下对实验电路结构图中出现的信号资源符号功能作出一些说明:
(1)附图2-1a是16进制7段全译码器,它有7位输出,分别接7段数码管的7个显示输入端:a、b、c、d、e、f和g;它的输入端为D、C、B、A,D为最高位,A为最低位。例如,若所标输入的口线为PIO19~16,表示PIO19接D、18接C、17接B、16接A。
(2)附图2-1b是高低电平发生器,每按键一次,输出电平由高到低、或由低到高变化一次,且输出为高电平时,所按键对应的发光管变亮,反之不亮。
(3)附图2-1c是16进制码(8421码)发生器,由对应的键控制输出4位2进制构成的1位16进制码,数的范围是0000~1111,即^H0至^HF。每按键一次,输出递增1,输出进入目标芯片的4位2进制数将显示在该键对应的数码管上。 (4)直接与7段数码管相连的连接方式的设置是为了便于对7段显示译码器的设计学习。以图NO.2为例,如图所标“PIO46-PIO40接g、f、e、d、c、b、a”表示PIO46、PIO45..PIO40分别与数码管的7段输入g、f、e、d、c、b、a相接。
(5)附图2-1d是单次脉冲发生器。每按一次键,输出一个脉冲,与此键对应的发光管也会闪亮一次,时间20ms。
(6)附图2-1e是琴键式信号发生器,当按下键时,输出为高电平,对应的发光管发亮;当松开键时,输出为高电平,此 键的功能可用于手动控制脉冲的宽度。具附图2-1 实验电路信号资源符号图 有琴键式信号发生器的实验结构图是NO.3。
2.各实验电路结构图特点与适用范围简述
(1)结构图NO.0:目标芯片的PIO19至PIO44共8组4位2进制码输出,经外部的7段译码器可显示于实验系统上的8个数码管。键1和键2可分别输出2个四位2进制码。一方面这四位码输入目标芯片的PIO11~PIO8和PIO15~PIO12,另一方面,可以观察发光管D1至D8来了解输入的数值。
例如,当键1控制输入PIO11~PIO8的数为^HA时,则发光管D4和D2亮,D3和D1灭。电路的键8至键3分别控制一个高低电平信号发生器向目标芯片的PIO7至PIO2输入高电平或低电平,扬声器接在“SPEAKER”上,具体接在哪一引脚要看目标芯片的类型,这需要查第3节的引脚对照表。如目标芯片为FLEX10K10,则扬声器接在“3”引脚上。目标芯片的时时钟输入未在图上标出,也需查阅第3节的引脚对照表。例如,目标芯片为XC95108,则输入此芯片的时钟信号有CLOCK0至CLOCK10,共11个可选的输入端,对应的引脚为65至80。具体的输入频率,可参考主板频率选择模块。此电路可用于设计频率计,周期计,计数器等等。
(2)结构图NO.1:适用于作加法器、减法器、比较器或乘法器等。例如,加法器设计,可利用键4和键3输入8 位加数;键2和键1输入8位被加数,输入的加数和被加数将显示于键对应的数码管4-1,相加的和显示于数码管6和5;可令键8控制此加法器的最低位进位。
(3)结构图NO.2:可用于作VGA视频接口逻辑设计,或使用数码管8至数码管5共4个数码管作7段显示译码方面的实验;而数码管4至数码管1,4个数码管可作译码后显示,键1和键2可输入高低电平。
(4)结构图NO.3:特点是有8个琴键式键控发生器,可用于设计八音琴等电路系统。也可以产生时间长度可控的单次脉冲。该电路结构同结构图NO.0一样,有8个译码输出显示的数码管,以显示目标芯片的32位输出信号,且8个发光管也能显示目标器件的8位输出信号。
(5)结构图NO.4:适合于设计移位寄存器、环形计数器等。电路特点是,当在所设计的逻辑中有串行2进制数从PIO10输出时,若利用键7作为串行输出时钟信号,则PIO10的串行输出数码可以在发光管D8至D1上逐位显示出来,这能很直观地看到串出的数值。
(6)结构图NO.5:此电路结构比较复杂,有较强的功能,主要用于目标器件与外界电路的接口设计实验。该电路主要含以9大模块:
1.普通内部逻辑设计模块。在图的左下角。此模块与以上几个电路使用方法相同,例如同结构图NO.3的唯一区别是8个键控信号不再是琴键式电平输出,而是高低电平方式向目标芯片输入(即乒乓开关)。此电路结构可完成许多常规的实验项目。
2.RAM/ROM接口。在图左上角,此接口对应于主板上,有2个32脚的DIP座,在上面可以插RAM,也可插ROM(仅GW48-GK/PK系统包含此接口)例如:
RAM:628128;ROM:27C010、27C020、27C040、27C080、29C010、29C020、29C040等。 此32脚座的各引脚与目标器件的连接方式示于图上,是用标准引脚名标注的,如PIO48(第1
脚)、PIO10(第2脚)等等。注意,RAM/ROM的使能由拨码开关“1”控制。
对于不同的RAM或ROM,其各引脚的功能定义不尽一致,即,不一定兼容,因此在使用前应该
查阅相关的资料,但在结构图的上方也列出了部分引脚情况,以资参考。
3.VGA视频接口。在图右上角,它与目标器件有5个连接信号:PIO40、41、42、43、44,通过查表(第3节的引脚对照表),可的对应于EPF10K20-144或EP1K30/50-144的5个引脚号分别是:87、88、89、90、91。
4.PS/2键盘接口。在图右上侧。它与目标器件有2个连接信号:PIO45、46。
5.A/D转换接口。在图左侧中。图中给出了ADC0809与目标器件连接的电路图。使用注意事项可参照上节。有关FPGA/CPLD与ADC0809接口方面的实验示例在本实验讲义中已经给出(实验12)。
6.D/A转换接口。在图右下侧。图中给出了DAC0832与目标器件连接的电路图。使用注意事项可参照上节。有关FPGA/CPLD与0832接口方面的实验示例在本实验讲义中已经给出(实验16)。
7.LM311接口。注意,此接口电路包含在以上的D/A接口电路中,可用于完成使用DAC0832与比较器LM311共同实现A/D转换的控制实验。比较器的输出可通过主板左下侧的跳线选择“比较器”,使之与目标器件的PIO37相连。以便用目标器件接收311的输出信号。
注意,有关D/A和311方面的实验都必须打开+/-12V电压源,实验结束后关闭此电源。
8.单片机接口。根据此图和附图2-13,给出了单片机与目标器及LCD显示屏的连接电路图。 9.RS232通信接口。
注意,结构图NO.5中并不是所有电路模块都可以同时使用,这是因为各模块与目标器件的IO接口有重合。仔细观察可以发现:
1.当使用RAM/ROM时,数码管3、4、5、6、7、8共6各数码管不能同时使用,这时,如果有
必要使用更多的显示,必须使用以下介绍的扫描显示电路。
但RAM/ROM可以与D/A转换同时使用,尽管他们的数据口(PIO24、25、26、27、28、29、30、31)是重合的。这时如果希望将RAM/ROM中的数据输入D/A器件中,可设定目标器件的PIO24、25、26、27、28、29、30、31端口为高阻态;而如果希望用目标器件FPGA直接控制D/A器件,可通过拨码开关禁止RAM/ROM数据口。
RAM/ROM能与VGA同时使用,但不能与PS/2同时使用,这时可以使用以下介绍的PS/2接口。
2. A/D不能与RAM/ROM同时使用,由于他们有部分端口重合,若使用RAM/ROM,必须禁止ADC0809,
而当使用ADC0809时,应该禁止RAM/ROM,如果希望A/D和RAM/ROM同时使用以实现诸如高速采样方面的功能,必须使用含有高速A/D器件的适配板,如GWAK30+等型号的适配板。 3. RAM/ROM不能与311同时使用,因为在端口PIO37上,两者重合。
(7)结构图NO.6:此电路与NO.2相似,但增加了两个4位2进制数发生器,数值分别输入目标芯片的PIO7~PIO4和PIO3~PIO0。例如,当按键2时,输入PIO7~PIO4的数值将显示于对应的数码管2,以便了解输入的数值。
(8)结构图NO.7:此电路适合于设计时钟、定时器、秒表等。因为可利用键8和键5分别控制时钟的清零和设置时间的使能;利用键7、5和1进行时、分、秒的设置。
(9)结构图NO.8:此电路适用于作并进/串出或串进/并出等工作方式的寄存器、序列检测器、密码锁等逻辑设计。它的特点是利用键2、键1能序置8位2进制数,而键6能发出串行输入脉冲,每按键一次,即发一个单脉冲,则此8位序置数的高位在前,向PIO10串行输入一位,同时能从D8至D1的发光管上看到串形左移的数据,十分形象直观。
(10)结构图NO.9:若欲验证交通灯控制等类似的逻辑电路,可选此电路结构。
(11)当系统上的“模式指示”数码管显示“A”时,系统将变成一台频率计,数码管8将显示“F”,“数码6”至“数码1”显示频率值,最低位单位是Hz。测频输入端为系统板右下侧的插座。
(13)实验电路结构图COM:此图的所有电路仅GW48-GK/PK系统拥有,即以上所述的所有电路结构(除RAM/ROM模块),包括“实验电路结构NO.0”至“实验电路结构NO.B”共11套电路结构模式为GW48-CK和GW48-GK/PK两种系统共同拥有(兼容),我们把他们称为通用电路结构。在原来的11套电路结构模式中的每一套结构图中增加附图2-13所示的“实验电路结构图COM”。
例如,在GW48-GK系统中,当“模式键”选择“5”时,电路结构将进入附图2-7所示的实验
电路结构图NO.5外,还应该加入“实验电路结构图COM”。这样以来,在每一电路模式中就能比原来实现更多的实验项目。
“实验电路结构图COM”包含的电路模块有:
1.PS/2键盘接口。注意,在通用电路结构中,还有一个用于鼠标的PS/2接口。
2.4键直接输入接口。原来的键1至键8是由“多任务重配置”电路结构控制的,所以键的输入信号没有抖动问题,不需要在目标芯片的电路设计中加入消抖动电路,这样,能简化设计,迅速入门。所以设计者如果希望完成键的消抖动电路设计,可利用此图的键9至键12。当然也可以利用此4键完成其他方面的设计。注意,此4键为上拉键,按下后为低电平。
3.I平方C串行总线存储器件接口。该接口器件用24C01担任,这是一种十分常用的串行E平方ROM器件。
4.USB接口。此接口是SLAVE接口。
5.扫描显示电路。这是一个6数码管(共阴数码管)的扫描显示电路。段信号为7个数码段加一个小数点段,共8位,分别由PIO60、61、62、63、64、65、66、67通过同相驱动后输入;而位信号由外部的6个反相驱动器驱动后输入数码管的共阴端。
6.实验电路结构图COM”中各标准信号(PIOX)对应的器件的引脚名,必须查附表1-2,而不是查第3节的通用的引脚对照表。附表1-2仅适用于GW48-GK/PK系统:7.发光管插线接口。在主板的右上方有6个发光管(共阳连接),以供必要时用接插线与目标器件连接显示。由于显示控制信号的频率比较低,所以目标器件可以直接通过连接线向此发光管输出。
实验电路结构图
数码8数码7数码6数码5数码4数码3数码2数码1扬声器译码器译码器译码器译码器译码器译码器译码器译码器PIO19-PIO16PIO23-PIO20PIO27-PIO24PIO31-PIO28PIO35-PIO32PIO39-PIO36PIO43-PIO40PIO47-PIO44D8D7D6D5D4D3D2D1FPGA/CPLD目标芯片PIO7D16PIO6D15PIO5D14PIO4D13PIO3D12PIO2D11HEXHEX键1PIO7--PIO2PIO11-PIO8PIO15-PIO12键8键7键6键5键4键3键2实验电路结构图NO.0SPEAKER
附图2-2 实验电路结构图NO.0
附图2-3 实验电路结构图NO.1