2024最全高一必修一数学知识点总结
高一数学必修一是很多同学的噩梦,知识点众多而且杂,对于高一的新生们很不友好,我建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。下面就是我给大家带来的高一必修一数学知识点,希望能帮助到大家!
高一必修一数学知识点1 一、集合
一、集合有关概念 1.集合的含义
2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N
正整数集N_或N+整数集Z有理数集Q实数集R 1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的
方法。{xR|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类:
(1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A②真子集:如果ABA)
③如果A④如果A
B,B
C,那么A
C
A
B,且AB那就说集合A是集合B的真子集,记作AB(或
B同时BA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 二、函数
1、函数定义域、值域求法综合
2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题——一题多解 &指数函数y=a^x
a^a_a^b=a^a+b(a>0,a、b属于Q) (a^a)^b=a^ab(a>0,a、b属于Q) (ab)^a=a^a_b^a(a>0,a、b属于Q) 指数函数对称规律:
1、函数y=a^x与y=a^-x关于y轴对称 2、函数y=a^x与y=-a^x关于x轴对称 3、函数y=a^x与y=-a^-x关于坐标原点对称 &对数函数y=loga^x 如果,且,,,那么: ○1?+; ○2-; ○3.
注意:换底公式 (,且;,且;). 幂函数y=x^a(a属于R)
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: ○1(代数法)求方程的实数根;
○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点: 二次函数.
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 三、平面向量
向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量.
单位向量:长度等于个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。 减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算