同济版 工程数学-线性代数第五版答案
第一章 行列式
1. 利用对角线法则计算下列三阶行列式:
201 (1)1?4?1;
?183201 解 1?4?1
?183 =2′(-4)′3+0′(-1)′(-1)+1′1′8 -0′1′3-2′(-1)′8-1′(-4)′(-1) =-24+8+16-4=-4.
abc (2)bcacab
abc 解 bca
cab =acb+bac+cba-bbb-aaa-ccc =3abc-a3-b3-c3.
111 (3)abca2b2c2;
111 解 abca2b2c22
2
2
2
2
2
=bc+ca+ab-ac-ba-cb (a-b)(b-c)(c-a).
xyx?y (4)yx?yx.
x?yxy
xyx?y 解 yx?yx
x?yxy =x(x+y)y+yx(x+y)+(x+y)yx-y-(x+y)-x =3xy(x+y)-y-3x y-x-y-x =-2(x+y).
2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;
解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;
解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;
解 逆序数为3: 2 1, 4 1, 4 3.
(5)1 3 × × × (2n-1) 2 4 × × × (2n); 解 逆序数为
3
3
3
2
3
3
3
3
3
3
n(n?1): 2 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) × × × × × ×
(2n-1)2, (2n-1)4, (2n-1)6, × × ×, (2n-1)(2n-2) (n-1个)
(6)1 3 × × × (2n-1) (2n) (2n-2) × × × 2. 解 逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) × × × × × ×
(2n-1)2, (2n-1)4, (2n-1)6, × × ×, (2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个) × × × × × ×
(2n)2, (2n)4, (2n)6, × × ×, (2n)(2n-2) (n-1个)
3. 写出四阶行列式中含有因子a11a23的项. 解 含因子a11a23的项的一般形式为
(
其中rs是2和4构成的排列所以含因子a11a23的项分别是 ( (
1)a11a23a32a441)a11a23a34a42
tt1)a11a23a3ra4s,
t 这种排列共有两个 即24和421)a11a23a32a441)a11a23a34a42
21
((
a11a23a32a44a11a23a34a42
4. 计算下列各行列式:
41 (1) 1001251202142; 0741 解 100125120214c2?c342??????10c?7c103074?12302021?104?1?102?122?(?1)4?3 ?14103?1404?110c2?c39910 ?12?2??????00?2?0.
10314c1?12c317171423 (2)1523 解 151?1201?1204236423611; 221c4?c221?????321521?12042301?12042360r4?r222?????310221?121423402 00r4?r123 ?????1002?0. 00;
?abacae (3)bd?cddebfcf?ef