【题目】口袋里装有100张卡片,分别写着1,2,3,……,100.从中任意抽出一张。请问: (1) 抽出的卡片上的数正好是37的概率是多少? (2) 抽出的卡片上的数是偶数的概率是多少? (3) 抽出的卡片上的数是质数的概率是多少? (4) 抽出的卡片上的数是101的概率是多少? (5) 抽出的卡片上的数小于200的概率是多少?
【试题来源】
【题目】在标准英文字典中,由2个不同字母组成的单词一共有55个.如果从26个字母中任取2个不同的排列起来,那么恰好能拍成一个单词的概率是多少?
【试题来源】
【题目】妈妈去家乐福购物,正好碰上了橘子、香蕉、葡萄和榴莲大降价。于是她决定从这4中水果中任选一种买回家。爸爸下班时路过集贸市场,发现有苹果、橘子、香蕉、葡萄和梨出售。他也决定任选一种买回家。请问:他们买了不同的水果的概率是多少?
【试题来源】
【题目】小悦掷出了2枚骰子,掷出的2个数字之和恰好等于10的概率有多少?
【试题来源】
【题目】盒子里装着20支圆珠笔,其中有5支红色的,7支蓝色的,8支黑色的。从中随意抽出4支,每种颜色的笔都被抽出的概率是多少?
【试题来源】
【题目】用下图中两个转盘进行“配紫色”游戏. 分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则,才能使该游戏对双方公平呢?
【试题来源】
【题目】小明和小刚改用如图所示的两个转盘做“配紫色”游戏.配成紫色,小刚得1分.否则小明得1分,这为什么?
【试题来源】
【题目】转动如图所示的转盘两次,每次指针都指向一个数字.两次所指的数字之积是质数,游戏者A得10分;乘积不是质数,游戏者B得1分.你认为这个游戏公平吗?如果你认为这个游戏不公平,你愿意做游戏者A还是游戏者B?为什么?你能设法修改游戏规则使得它对游戏双方都公平吗?
个游戏对双方公平吗?
【试题来源】
【题目】用转盘(如图)做游戏,每次游戏游戏者需交游戏费1元.游戏时,游戏者先押一个数字,然后快速地转动转盘,若转盘停止转动时,指针所指格子中的数字恰为游戏者所押数字,则游戏者将获得奖励36元.该游戏对游戏者有利吗?转动多少次后,游戏者平均每次将获利或损失多少元?
【试题来源】
【题目】甲乙两人在靶场射击。甲击中目标的概率是0.6,乙击中目标的概率是0.7.两人朝
着同一个目标各射击一次,结果目标被击中了。请问:恰好是甲击中目标而乙没有击 中的概率是多少?
【试题来源】
【题目】口袋里装有3张卡片,一张一面红一面黄,一张一面黄一面蓝,一张一面蓝一面红。张莉从口袋中随意摸出其中一张,发现朝向自己的一面恰好是红色。请问,此时这张卡片的另一面是蓝色的概率是多少?
【试题来源】
【题目】口袋里装有4张卡片,两张两面全黑,一张两面全白,一张一面黑一面白。张莉从
口袋中随意摸出其中一张,发现朝向自己的一面恰好是黑色。请问,此时这张卡片的 另一面是还是黑色的概率是多少?
【试题来源】
【题目】6名小朋友在操场上做游戏,他们被老师分成三组,每组2个人。请问:赵倩和孙莉恰好分到了同一组的概率是多少?
【试题来源】
【题目】某工厂生产了200件商品,合格率是99%,那么从中抽取1件恰好是次品的概率是1%。请问:从中抽查5件,发现瓷瓶的概率比5%大还是比5%小?
【试题来源】
【题目】某人练习射击,在有戴眼镜的情况命中率是20%,没带眼镜的命中率是0%。他在5次射击后都未命中目标,求他戴了眼镜的概率是多少?
陈景润是一个家喻户晓的数学家,在攻克哥德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”.但有谁会想到,他的成就源于一个故事.
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡.几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请.由于他是英华
的校友,为了报达母校,他来到了这所中学为同学们讲授数学课.
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89.每个大于4的偶数都可以表示为两个奇数之和.因为这个结论没有得到证明,所以还是一个猜想.大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的.
它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉.……”陈景润瞪着眼睛,听得入神.
从此,陈景润对这个奇妙问题产生了浓厚的兴趣.课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读.因此获得了“书呆子”的雅号.
兴趣是第一老师.正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家.