证 首先证明相容性。nn?nA?R和任意的非零向量Y?R对任意矩阵 由于 所以有maxX?0AXXrrY?AYrX?0r1?AYYrrrrAYr?YrmaxAXXrAXX?ArYr此结果显然也适用于Y=0的情形。再证明Ar?maxX?0r,(r?1,2,?)满足矩阵范数的四个条件。(1)当A=0时,Ar?0;当A≠0时,必有Ar?0(2)对任一数k?R有kAr?maxX?0kAXXrr?kmaxX?0AXXrr?kAr(3)对任意的矩阵A,B?Rn?n,式A?Br?maxX?0(A?B)XXAXXrrrr?maxX?0AX?BXXrr?max(X?0AXXrr?BXXrr)?maxX?0?maxX?0BXXrr?Ar?Br成立。(4)ABr?maxX?0ABXXX?0rr?maxArX?0rrBXXrrr?Armax证毕。BXX?ArB常用的3种算子范数的定义与算式为:p10-111―范数(列模) A1?maxX?0AXX11?max1?j?n?naiji?12―范数(谱模) A2?maxX?0∞―范数(行模) A??maxX?0?i其中?max(AA)?max1?i?nTAXXAXX??22??max(AA)nT?max?aij1?i?nj?1AA的特征值。?i为 T?4?3?A??A2。A?,A1及 例6 设 ,求 ??21?解:A??max{4??3,2?1}?7TA1?{4?2,?3?1}?6又T?42??4?3??20?10?AA??????????31??21???1010?AA的特征方程为??2010?I?AA??010??10T 它的根为?1?15?5
5,?2?15?55因而A2?15?55?5.1167练习:已知矩阵A和向量X,求X1,X2,X?,A?,A1及
A2。其中x?(1,2,?3),?120???A???12?1???010??