第三单元 函数
第十一课时 一次函数与应用
基础达标训练
1. (2017陕西)若一个正比例函数的图象经过A(3,-6),B(m,-4)两点,则m的值为( )
A. 2 B. 8 C. -2 D. -8
2. (2017沈阳)在平面直角坐标系中,一次函数y=x-1的图象是( )
3. (2017上海)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( ) A. k>0,且b>0 B. k<0,且b>0 C. k>0,且b<0 D. k<0,且b<0
4. (2017广安)当k<0时,一次函数y=kx-k的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
5. 一次函数y=ax+b的图象如图所示,
第5题图
则不等式ax+b≥0的解集是( ) A. x≥2
B. x≤2 C. x≥4 D. x≤4
6. (2017苏州)若点A(m,n)在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为( )
A. b>2 B. b>-2 C. b<2 D. b<-2
7. (2017温州)已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是( ) A. 0 8. (2017天津)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、第四象限,则k的值可以是________(写出一个即可). 第9题图 9. (2017成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1________y2.(填“>”或“<”) 10. (2017荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为________. 1 11. (2017眉山)设点(-1,m)和点(2,n)是直线y=(k2-1)x+b(0 12. (8分)(2017台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b). (1)求b,m的值; (2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值. 第12题图 13. (8分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式.如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题: (1)求手机支付金额y(元)与骑行时间x(时)的函数关系式; (2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 第13题图 14. (9分)(2017长沙中考模拟卷二)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和每名新工人每月分别可以安装多少辆电动汽车? (2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? (3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少? 能力提升训练 1. (2017泰安)已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是( ) A. k<2,m>0 B. k<2,m<0 C. k>2,m>0 D. k<0,m<0 2. 一次函数y=-2x+m的图象经过点P(-2,3),且与x轴,y轴分别交于点A,B,则△AOB的面积是( ) 11 A. 2 B. 4 C. 4 D. 8 第3题图 3. (2017孝感)如图,将直线y=-x沿y轴向下平移后的直线恰好经过点A(2,-4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为________. 4. (8分)(2017连云港)如图,在平面直角坐标系xOy中,过点A(-2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y 轴交于点D、C. (1)若OB=4,求直线AB的函数关系式; (2)连接BD,若△ABD的面积是5,求点B的运动路径长. 第4题图 5. (9分)(2017孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区.经考察,劲松公司有A,B两种型号的健身器材可供选择. (1)劲松公司2015年每套A型健身器材售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n; (2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元.采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1-n)万元. ①A型健身器材最多可购买多少套? ②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要? 6. (9分)(2017湖州)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元. (总成本=放养总费用+收购成本) (1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值; (2)设这批淡水鱼放养t天后的重量为m(kg),销售单价为y元/kg.根据以往经验