24分提分题组(10套)
题组训练 1
(时间:30分钟 分值:24分)
k
1. 已知平行四边形OABC的顶点A,C在反比例函数y=的图象上,点A与点C关于对角线OB对称,
x且∠AOC=30°,若OA=2,则过点B的反比例函数解析式为________.
第1题图
2. (本小题满分10分)2024年4月29日至10月7日,2024年中国北京世界园艺博览会(简称北京世园会)在中国北京市延庆区举行,展期162天.这是继云南昆明后第二个获得国际园艺生产者协会批准及国际展览局认证授权举办的A1级国际园艺博览会.北京世园会门票种类分为平日票、指定日票、三次票等票种,同时按销售对象分为普通票、优惠票和团队票(学生享受优惠票,15人以上可以享受团体票).指定日包括开园日、“五一”假期、端午节假期、中秋节假期、“十一”假期这些日期,其余时间为平日;三次票是指除指定日外,同一持票人在展会期间可以任选三天入园的票种.具体如下表:
指定日票价(元/张) 160 100 三次票价(元/张) 300 平日票 普通票 优惠票 120 80 小明,小亮两家共10人打算一起参观北京世园会(10人均需购票).
(1)若他们端午节去北京世园会参观购买门票共花费1360元,问他们购买普通票和优惠票各几张?
(2)如果他们平日去北京世园会参观,且购买门票的费用不超过2000元,那么在保证游玩的前提下最多可以买几张三次票?共有几种买票方案?分别是什么?
3. (本小题满分10分)
甲、乙两个销售部售卖同一种成本为8元/件的商品,分别采用不同的销售模式,甲销售部的标价为14元/件,采用“买二赠一”的优惠方式;乙销售部的标价为12元/件,采用“第二件半价”的优惠方式.下表是两个销售部今年2月份每周商品的总销售量:
件数(件) 时间 甲 第一周 第二周 第三周 第四周 330 300 420 450 乙 512 240 480 500 (1) 随机从甲销售部中选取一组数据,求每周的销售利润达到500元以上的概率; (2) 根据以上信息,以甲、乙两个销售部2月份的销售情况为依据,解决下列问题: ①估计甲销售部每周的平均销售利润为多少元?
②该公司销售总监想要从这两种优惠方式中选定一种,作为明年同期该商品的优惠策略,如果仅从平均销售利润的角度考虑,请利用所学的统计知识解决问题,并说明理由.
题组训练2
(时间:30分钟 分值:24分)
1. 如图,平面直角坐标系中,正方形OABC的顶点A,C分别在x轴,y轴上,B(2,2),将正方形OABC43k绕O点旋转到正方形OA′B′C′的位置,已知两正方形的重叠部分面积为,且点C′在反比例函数y=(k≠0)
3x的图象上,则k的值为________.
第1题图
2. (本小题满分10分)
规定:在平面直角坐标系内,某直线l1绕原点O顺时针旋转90°,得到的直线l2称为l1的“旋转垂线”. (1)求出直线y=-x+2的“旋转垂线”的解析式;
(2)若直线y=k1x+1(k1≠0)的“旋转垂线”为直线y=k2x+b.求证:k1·k2=-1.
第2题图
3. (本小题满分10分)
机械表是日常生活中常见的一类钟表,与电子表不同,机械表受环境、机芯等因素的影响常会产生走时误差.现为了比较市场上甲、乙两款机械表的精准度,从两款表中,各随机抽取一块进行每日走时误差
的检测,连续检测10天,两款表每日走时误差的统计数据如图(单位:秒):
(1)甲、乙两种机械表的平均走时误差分别是多少?
(2)小明现计划购买一块机械表,如果仅从走时的准确度考虑,你会推荐他购买甲、乙哪一种,请说明理由.
机械表走时误差统计图
第3题图