好文档 - 专业文书写作范文服务资料分享网站

聚酰亚胺基础知识-1横田力男 

天下 分享 时间: 加入收藏 我要投稿 点赞

第一编 基础编

第1章 聚酰亚胺合成法

1.前言

正象主链含酰胺结构的聚合物被称为聚酰胺那样,主链含亚胺结构的聚合物统称为聚酰亚胺。1)其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。相反具有环状结构的聚酰亚胺,特别是五员环状聚酰亚胺已知的品种很多,实用性很强。因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。环状聚酰亚胺与聚苯并咪唑等同是含氮的杂环聚合物的一种。

图示1

聚酰亚胺进一步还可分为由芳香族四羧酸和二胺为原料通过缩聚反应得到的缩聚型聚酰亚胺和双马酰亚胺经加聚反应(或缩加聚)得到的加聚型聚酰亚胺。其中前面的缩聚型聚酰亚胺是大家最熟悉也是应用最广的,一般所称的聚酰亚胺都是指这种缩聚型聚酰亚胺。本书也是以这种缩聚型聚酰亚胺为主。而后者为加聚型聚酰亚胺实际属耐热性热固型树脂的热固型聚酰亚胺(参考应用编第2章)。

具有代表性的聚酰亚胺就是由美国杜邦公司1960年开发成功,1965年商品化的二苯醚型聚酰亚胺。也就是大家所熟悉的称为[Kapton]聚酰亚胺,经过40多年后至今仍然在高耐热性塑料中保持领先地位的一种优异的材料。关于这种聚酰亚胺开发的经过Sroog(Dupont

公司)有过详细的介绍。2

图示2

(1) 这种聚酰亚胺由于具有刚直的主链且不溶于有机溶剂,而且还不熔融,所以是用特殊

的两步合成法合成制造的。即是用均苯四甲酸酐PMDA和二苯醚二胺ODA为原料,合成可溶性聚酰胺酸,在这个聚酰胺酸阶段进行成型加工后,通过加热(当然发生化学反应)脱

,)

水环化(亚胺化)得到Kapton薄膜等一系列聚酰亚胺制品(反应式1)。34

从这种聚酰亚胺开始,一系列芳香族聚酰亚胺作为高耐热性塑料虽然在广泛产业界起到了重要的作用,但由于大多数芳香族聚酰亚胺都是不溶不熔的,所以都通过(1)式所示的两步法来合成和制备。由芳香族四甲酸酐和芳香族二胺为原料通过两步法合成聚酰亚胺的

一般反应式如(2)式所示。

(2)

这种通过聚酰胺酸的两步合成法是从60年代开始采用的一种古典且具代表性的合成方法。这种方法虽然存在聚酰亚胺的前驱体聚酰胺酸在溶液状态的贮存稳定性不好等问题,但其重要性至今仍保持不变。在本章中作为聚酰亚胺合成方法,首先叙述这种通过聚酰胺酸的两步合成,之后再对不经过聚酰胺酸这种复杂过程的合成方法进行介绍。也就是把一步法合成聚酰亚胺和经过聚酰胺酸衍生物的合成方法作叙述。作为参考列出了聚酰亚胺合成的有

))

关文献。5~16

2.经由聚酰胺酸的两步合成法 2.1聚酰亚胺的形成过程

在介绍聚酰胺酸和聚酰亚胺合成、制备之前,先看一下由芳香族四羧酸二酐和芳香族

(3) 二胺通过两步法合成聚酰亚胺的过程。聚酰亚胺的形成过程可分成由(3)式到(7)式的五个基本反应。

(4)

(5)

(6)

(7)

其中,(3)式的由环状酸酐和胺的开环反应形成酰胺酸和(4)式的由酰胺酸脱水形成环状酰亚胺是主反应。(5)式到(7)式是经过环状酰亚胺互变异构化的环状异构酰亚胺(环状酰亚胺的异构体)的形成和由它的异构化形成环状酰亚胺的过程。另外(3)式的酰胺酸的形成反应是一个平衡反应,为便于参考把这个逆反应也考虑在内,则如(8)式所示:

(8)

现在把(3)式的形成酰胺酸的反应再详述一下。酸酐在羧酸衍生物中反应活性是仅

),)

次于酰氯的1718,环状酸酐1和二胺2在适当的溶剂中,在室温下会很快发生放热反应,得到开环的酰胺酸4(3式)。这个反应是属于二胺与环状酸酐的开环加成反应,从反应机理来讲是二胺2的氮与酸酐的羧基碳之间的亲核加成,形成环状四面体的中间体3(不稳定),接着是从四面体中间体进行羧酸分子内异构形成酰胺酸结构的开环加成物4,即由亲核加成

,)

-异构两步形成的亲核酰基置换反应。1819

接着通过(4)式,酰胺酸结构的开环加成物4(环状酰亚胺的前驱体)的酰胺基的氮对分子内的羧酸的羰基碳进行亲核进攻形成环状四面体中间体5,接着从5经脱水反应形成环状酰亚胺6。这个脱水环化(环状亚胺化)反应也是由亲核加成-异构两步机理的亲核酰

,)

基置换反应1819。

下面的(5)式,是酰胺酸的羰-醇互变异构。酰胺酸在一般情况取热力学稳定的酮型4,但有时也会取醇型7(不稳定),如(5)式所示。

这里由(5)式的互变异构酰胺酸的醇形7的羟基的氧,对分子内的羧酸的羰基碳进行亲核攻击后,按(6)式形成环状四面体中间体8(不稳定),接着由8脱水后形成环状异构酰亚胺9。

一般情况下酰亚胺是热力学稳定的生成物,与其相比相当于它的异构体的异构酰亚胺则是动力学的生成物,在热力学上是不稳定的结构。因此,异构酰亚胺通过加热很容易发

生异构化(chapman型分子内旋转)形成热力学稳定的酰亚胺。实际上环状异构酰亚胺9(不稳定结构)也会因加热按7式很容易异构化为环状酰亚胺6。

前面形成酰胺酸结构的开环加成体4的(3)式反应是个平衡反应,为更准确把逆反应也考虑进去,则如(8)式所示。这个(8)式中酰胺酸4的羧酸基在分子内是具有亲核-亲电子催化作用的双官能团催化剂的功能20),会由它使环状酸酐1与二胺2生成更容易。这个反应过程与前面同样,酰胺酸4的酰胺羰基与分子内的羧酸羟基的氧通过亲核加成(经过环状四面体10),此后形成环状酸酐和二胺2的脱离。也就是说,(3)式正反应四面体中间体3与逆反应(8)式的四面体10实质上是同一种物质。

从上面可看到,与环状酸酐及其衍生物的相关反应,?全都是环状酸酐的羰基碳是反应点,因此通过这个羰基碳的亲核取代反应,都是由亲核加成-脱离两步构成的亲,19)

核酰基取代反应18)。这个反应过程是以后叙述的所有环状酸酐衍生物的相关反应有共同之处。 2.2聚酰胺酸的形成

一般的聚酰亚胺如前面的(2)式所示,由芳香族四酸二酐和芳香族二胺通过两步合成法很容易合成制备。首先第一步把芳香族二胺溶解在二甲基乙酰胺DMAc或者N-甲基吡咯烷酮NMP这种极性酰胺类溶剂中。然后再把芳香族四酸二酐以固体状态(粉末)加入,在室温下进行搅拌,固体四酸二酐溶解的同时,与二胺发生放热的开环加成反应,可以看到聚合溶液粘度急速增加,并在较短的时间内形成高分子量的聚酰胺酸。而第二步由聚酰胺酸

,,)

脱水环化(环化亚胺化)反应生成聚酰亚胺,只要加热聚酰胺酸就很容易完成42122。因此,只要手头有了芳香族四酸二酐和芳香族二胺,不论谁在任何时候,就能简便地合成聚酰胺酸或聚酰亚胺,这是两步合成法的最大特点。

不过(2)式的开环加成反应是个平衡反应((3)式)。例如(1)式的均苯四甲酸二酐PMDA与二苯醚二胺ODA反应的情况,在40℃的DMAc溶液这种极性酰胺类溶剂中,其平衡常数K为105L/mol以上,非常大,在(3)式所示的反应体系中与反应物(左侧)相比之下,很大程度上偏向生成物(右侧),这使平衡聚合度P达到300以上(P大约等于K

的平方根),分子量大约在10万左右,表明很容易形成高分子量的聚酰胺酸23。

聚酰胺酸生成的难易取决于芳香族四酸二酐和芳香族二胺的反应活性。这两类成分的反应活性从反应论角度可从(3)式进行预测。芳香族四酸二酐的反应活性(亲电子性),从(3)式看酸酐1的羧基碳的电子密度愈低活性愈高。即芳香环上带有吸电子取代基芳香族四酸二酐反应活性就高,具有给电子取代基的反应活性就低。具体是均苯四甲酸酐>砜二酞酸酐>酮二酞酸酐>六氟异丙叉二酞酸酐>联苯四羧酸二酐>二苯醚二酸酐,按顺序反应性降低。(这些化学式参照实用材料篇第一章。)

另一方面芳香族二胺的反应活性(亲核性)是(3)式的胺2的氮电子密度愈高反应活性愈高。即芳香环上带给电子的取代基胺反应活性高,相反有吸电子取代基则反应活性低。比较具有连结基X的芳香族二胺H2N-(P-C6H4)-X-(P-C6H4)-NH2的反应活性时,是按X为-O->-CH2->->-(C=O)->-SO2-的顺序反应活性降低。不过在实际合成聚酰胺酸的时候,与芳香族四酸二酐相比是芳香族二胺的种类不同对酰胺酸生成的难易影响更大。

关于聚酰胺酸的合成方法,向芳香族二胺溶液中直接加入芳香族四酸二酐固体(粉末)进行开环加成反应的做法,不仅实验采用,生产现场也广泛采用。实际上,对这个反应混合

物溶液进行搅拌时,固体芳香族四酸二酐并不是一下全溶,而是在固体酸酐表面溶解的同时就与接触它的芳香族二胺之间进行反应,这一现象可以观察到。既可看到在固体四酸二酐的附近,溶解下来的芳香族四酸二酐与芳香族二胺呈当场浓缩状态,呈现红黄色(形成电荷

,)

转移络合物)并随反应的进行,这种颜色变淡,同时反应体系溶液粘度增大421。这是所有四酸二酐溶解消耗了,从反应体系整体看两反应成份在化学当量上达到均衡反应已经完成以前的情况,也就是两种反应物当场立即反应生成部分高分子量的聚酰胺酸。不过严格来讲溶液粘度与重均分子量MW相对应,而对数均分子量Mn并不敏感,因此,当场是

聚酰胺酸的重均分子量急激增大24。当然就局部而论,两种反应物的化学当量失调的地方也存在,这时就会生成低分子量(重均分子量小)的聚酰胺酸,这样一来生成了分子量分布宽的聚酰胺酸(MW/Mn>2),这个反应体系不是均一的溶液反应,与开环加成反应速度相比,反而是固体芳香族四酸二酐的溶解速度要慢。它具有固体溶解扩散速度起决定作用的固-液

界面非均一反应的特征25。这样一来刚反应生成的聚酰胺酸溶液的粘度会随时间的延长而

,,)

下降,这一点很早大家都承认21)22)26,关于这一现象(聚酰胺酸的不稳定性)将在下面的2.3项讨论。

生成高分子量的聚酰胺酸的关键是反应所用的芳香族四酸二酐和芳香族二胺必须保证高纯度,聚合溶剂也要高纯度,同时不仅反应容器就是装两种反应物和溶剂的容器都要完全干燥(无水状态)且无氧氛围(芳香族二胺很易氧化)。芳香族四酸二酐和芳香族二胺的精制(高纯化)与其用重结晶方法,不如用升华方法更有效。关于聚合溶剂,例如DMAc或NMP这类极性酰胺溶剂可用加入P2O5后真空蒸馏来得到无水溶剂,同时也可除去溶剂中存在的胺等不纯物。之所以要非常重视反应体系中的水分,是因为反应体中具有高反应性的芳香族四酸二酐会与水发生分解反应生成如(9)式所示的邻苯二甲酸,由于它的反应活性低,在室温附近不能与芳香族二胺反应,将使部分芳香族四酸二酐失去反应活性,从而丧失了形成高分子量聚酰胺酸的必要条件,即不能保持芳香族四酸二酐和芳香族二胺1:1的化学当量。

(9)

这里再考虑一下芳香族四酸二酐和芳香族二胺加料的顺序和形成的聚酰胺酸的分子量的关系。为了得到高分子量的聚酰胺酸,很早就采用向芳香族二胺溶液中直接加入固体(粉

),),)

末)芳香族四酸二酐进行反应42122。这种情况下如果假定反应体系中存在微量水分时,芳香族四酸二酐就不仅会和二胺反应也有与水反应的可能性,但由于二胺的亲核反应活性远大于水,则它将优先与二胺反应仍能得到高分子量的聚酰胺酸。如果相反,向芳香族四酸二酐溶液中加入芳香族二胺时,在没加入二胺进行反应之前,四酸二酐在溶于溶剂的过程中,就会因为聚合溶剂和反应体系中存在的少量水而使部分酸酐按(9)式进行水解反应而失去活性的机会很大,从而丧失反应的等当量性,很难得到高分子量的聚酰胺酸。

在前面提到的理想的反应条件下,也就是用高纯度的芳香族四酸二酐PMDA和芳香族二胺ODA加入高纯度酰胺类溶剂(NMP,用真空蒸馏精制后马上用)中,在确保体系中无微量水和氧的条件下反应,则芳香族四酸二酐和芳香族二胺的浓度和它们的加料顺序,即不论是向二胺溶液中加入四酸二酐,还是相反向四酸二酐溶液中加入二胺,对生成的聚酰胺

酸的分子量并无影响,这一点最近已被实验所证实25。不过一般的实验室或生产现场,要

聚酰亚胺基础知识-1横田力男 

第一编基础编第1章聚酰亚胺合成法1.前言正象主链含酰胺结构的聚合物被称为聚酰胺那样,主链含亚胺结构的聚合物统称为聚酰亚胺。1)其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。相反具有环状结构的聚酰亚胺,特别是五员环状聚酰亚胺已知的品种很多,实用性很强。因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。环状聚
推荐度:
点击下载文档文档为doc格式
8hwdg7mkaa1wxgu8k8be9y6ym8c7oz00mte
领取福利

微信扫码领取福利

微信扫码分享