中考数学模拟试卷含答案
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.(3分)下列四个数:﹣3,﹣A.﹣π B.﹣3 C.﹣1 D.﹣
,﹣π,﹣1,其中最小的数是( )
2.(3分)下列图形中,是轴对称图形但不是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正六边形 D.圆
3.(3分)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( ) A.1×106
B.100×104 C.1×107
D.0.1×108
4.(3分)如图,直线m∥n.若∠1=70°,∠2=25°,则∠A等于( )
A.30° B.35° C.45° D.55° 5.(3分)下列说法正确的是( )
A.“打开电视,正在播放新闻节目”是必然事件
B.要考察一个班级中的学生对建立生物角的看法适合采用抽样调查方式 C.为了解潜江市4月15日到29日的气温变化情况,适合制作折线统计图 D.对端午节期间市面上粽子质量情况的调查适合采用全面调查(普查)方式 6.(3分)下列等式从左到右的变形,属于因式分解的是( ) A.x2+2x﹣1=(x﹣1)2
B.(a+b)(a﹣b)=a2﹣b2 C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)
的解集是x<5,则m的取值范围是( )
7.(3分)若关于x的一元一次不等式组A.m≥5 B.m>5 C.m≤5 D.m<5
8.(3分)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是( )
A.200 cm B.600 cm C.100π cm D.200π cm
9.(3分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3是( )
),反比例函数y=的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值
2222
A.6 B.﹣6 C.12 D.﹣12
10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP=PH?PC 其中正确的是( )
2
A.①②③④ B.②③ C.①②④ D.①③④
二、填空题(每小题3分,共18分)
11.(3分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .
12.(3分)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:
“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组 .
13.(3分)已知x1,x2是关于x的方程x2+nx+n﹣3=0的两个实数根,且x1+x2=﹣2,则x1x2= . 14.(3分)如图,直线y=x+1与x轴,y轴分别交于A、B两点,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:2,则点B′的坐标为 .
15.(3分)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元/件,才能在半月内获得最大利润.
16.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2024次后,点P的坐标为 .
三、解答题(共9小题,满分72分) 17.(5分)计算:(﹣
)×
+|
﹣2|﹣().
﹣1
18.(5分)如图,在Rt△ABC中,∠C=90°,求作Rt△ABC的外接圆(不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑).
19.(6分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,求树高DE的长度.
20.(8分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7 乙:5,7,8,7,8,9,7,9,10,10 丙:7,6,8,5,4,7,6,3,9,5 (1)根据以上数据完成下表:
甲 乙 丙 平均数 8 8 6 中位数 8 8 方差 2.2 3 (2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
21.(9分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?
(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示); (3)在抛物线y=x+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.
22.(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF. (1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
2
23.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元. (1)求一件A,B型商品的进价分别为多少元?
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈
善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.
24.(10分)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE,过点B作⊙O的切线交EC的延长线于点P. (1)求证:AC=AE?AB;
(2)试判断PB与PE是否相等,并说明理由;
(3)设⊙O的半径为4,N为OC的中点,点Q在⊙O上,求线段PQ的最小值.
2
25.(12分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N. ①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
2