高中数学知识点总结2 2009-07-05 13:00
③抛物线y2=2px(p>0),对称轴上一定点 ,则:
<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。 3.直线与圆锥曲线问题解法:
⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。 注意以下问题:
①联立的关于“ ”还是关于“ ”的一元二次方程? ②直线斜率不存在时考虑了吗? ③判别式验证了吗?
⑵设而不求(代点相减法):--------处理弦中点问题
步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。
4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。
第七部分 平面向量
⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0; ② a⊥b(a、b≠0) a?b=0 x1x2+y1y2=0 . ⑵a?b=|a||b|cos=x2+y1y2; 注:①|a|cos叫做a在b方向上的投影;|b|cos叫做b在a方向上的投影;
6 a?b的几何意义:a?b等于|a|与|b|在a方向上的投影|b|cos的乘积。 ⑶cos= ;
⑷三点共线的充要条件:P,A,B三点共线 ; 附:(理科)P,A,B,C四点共面 。
第八部分 数列 1.定义:
⑴等差数列 ; ⑵等比数列 ;
2.等差、等比数列性质
等差数
列 等比数列 通项公
式 前n项和 性质 ①an=am+ (n-
m)d, ①an=amqn-m; ②m+n=p+q时
am+an=ap+aq ②m+n=p+q时aman=apaq ③ 成AP ③ 成GP ④ 成AP, ④ 成GP,
等差数列特有性质:
1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ; 2 项数为2n-1时:S2n-1=(2n-1) ; ; ; 3 若 ;若 ; 若 。
3.数列通项的求法:
⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ; ⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;
⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。
注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。 4.前 项和的求法:
⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。 5.等差数列前n项和最值的求法:
⑴ ;⑵利用二次函数的图象与性质。
第九部分 不等式 1.均值不等式:
注意:①一正二定三相等;②变形, 。 2.绝对值不等式: 3.不等式的性质: ⑴ ;⑵ ;⑶ ; ;⑷ ; ; ;⑸ ;(6) 。
4.不等式等证明(主要)方法:
⑴比较法:作差或作比;⑵综合法;⑶分析法。
第十部分 复数 1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0; ⑵z=a+bi是虚数 b≠0(a,b∈R);
⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0; ⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ; 3.几个重要的结论: ;⑶ ;⑷
⑸ 性质:T=4; ;
(6) 以3为周期,且 ; =0; (7) 。
4.运算律:(1)
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。 6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率 1.事件的关系:
⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ; ⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;
⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 ); ⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ; ⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;
(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。 2.概率公式:
⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B); ⑵古典概型: ; ⑶几何概型: ;
第十二部分 统计与统计案例 1.抽样方法
⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
注:①每个个体被抽到的概率为 ;
②常用的简单随机抽样方法有:抽签法;随机数法。
⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的
规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。 注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;
④按预先制定的规则抽取样本。 ⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
注:每个部分所抽取的样本个体数=该部分个体数 2.总体特征数的估计: ⑴样本平均数 ; ⑵样本方差 ; ⑶样本标准差 = ;
3.相关系数(判定两个变量线性相关性):
注:⑴ >0时,变量 正相关; <0时,变量 负相关;
⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。
4.回归分析中回归效果的判定:
⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。
注:① 得知越大,说明残差平方和越小,则模型拟合效果越好; ② 越接近于1,,则回归效果越好。 5.独立性检验(分类变量关系):
随机变量 越大,说明两个分类变量,关系越强,反之,越弱。
第十四部分 常用逻辑用语与推理证明
1. 四种命题:
⑴原命题:若p则q; ⑵逆命题:若q则p; ⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:原命题与逆否命题等价;逆命题与否命题等价。 2.充要条件的判断:
(1)定义法----正、反方向推理;
(2)利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件; 3.逻辑连接词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p
q; 真 真 真 真 假 ⑶非(not):命题形式
p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真 4.全称量词与存在量词
⑴全称量词-------“所有的”、“任意一个”等,用 表示; 全称命题p: ;
全称命题p的否定 p: 。
⑵存在量词--------“存在一个”、“至少有一个”等,用 表示; 特称命题p: ;
特称命题p的否定 p: ; 第十五部分 推理与证明 1.推理:
⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。 ①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。 ②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。 注:类比推理是特殊到特殊的推理。
⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
注:演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:
⑴大前提---------已知的一般结论; ⑵小前提---------所研究的特殊情况;
⑶结 论---------根据一般原理,对特殊情况得出的判断。 二.证明 ⒈直接证明 ⑴综合法 一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。 ⑵分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。 2.间接证明------反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。 附:数学归纳法(仅限理科)
一般的证明一个与正整数 有关的一个命题,可按以下步骤进行: ⑴证明当 取第一个值 是命题成立;
⑵假设当 命题成立,证明当 时命题也成立。
那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。 这种证明方法叫数学归纳法。 注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;
3 的取值视题目而4 定,5 可能是1,6 也可能是2等。 第十六部分 理科选修部分 1. 排列、组合和二项式定理 ⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!; ⑵组合数公式: (m≤n), ; ⑶组合数性质: ; ⑷二项式定理:
①通项: ②注意二项式系数与系数的区别; ⑸二项式系数的性质:
①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大; ③
(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。 2. 概率与统计
⑴随机变量的分布列:
①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1; ②离散型随机变量: X x1 X2 … xn … P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ; 注: ;
③两点分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p
4 超几何分布:
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。 称分布列
X 0 1 … m
P … 为超几何分布列, 称X服从超几何分布。 ⑤二项分布(独立重复试验):
若X~B(n,p),则EX=np, DX=np(1- p);注: 。
⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。 注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。 ⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。
⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;
(6)正态曲线的性质:
①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称; ③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1; 5 当 一定时,6 曲线随 质的变化沿x轴平移;
7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;
越小,曲线越“高瘦”,表示总体分布越分散。 注:P =0.6826;P =0.9544 P =0.9974