最新北师大版七年级数学上册基本平面图形知识点典型例题练习
第四章:基本平面图形 知识梳理
一、线段、射线、直线 1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。
结论:直线、射线、线段之间的区别:联系:射线是直线的一部分。线段是射线的一部分,也是直线的一部分。 2、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。简称两点确定一条直线。
(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公
共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。 6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
1若C是线段AB的中点,则:AC=BC=AB或AB=2AC=2BCB2C 二、角1、角的概念:
(1)角可以看成是由两条有共同端点的射线组成的图形。两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。 2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE
等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
3、角的度量:会用量角器来度量角的大小。角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1′”, 1°=60′。把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”,1′=60″。 4、锐角、直角、钝角、平角、周角的概念和大小
①平角:角的两边成一条直线时,这个角叫平角。②周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
③0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
④ 角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
5、画两个角的和,以及画两个角的差
①用量角器量出要画的两个角的大小,再用量角器来画。 ②三角板的每个角的度数,30°、60°、90°、45°。 6、角的平分线从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。
1若BD是∠ABC的平分线,则有:∠ABD=∠CBD=∠ABC;∠ABC=2∠ABD=2∠CBD 2