好文档 - 专业文书写作范文服务资料分享网站

2024-2024学年江苏省徐州市高一下学期期中考试数学试题(含答案) - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

绝密★启用前

江苏省徐州市2024-2024学年度第二学期期中学情调研试题

高一数学

注意事项:1、答题前填写好自己的姓名、班级、考号等信息

2、请将答案正确填写在答题卡上

一、单项选择题:本大题共8小题,每小题

5分,共计40分,在每小题给出的四个选项中,

只有一项是符合题目要求的

.

1.??????450??????150+??????450??????150

的值为(▲

A.-

32

B.

32

C.-

12

D.

12

2.在正方体????????-??1??1??1??1中,直线????1与??1??

是(▲)

(第2题图)

A.异面直线B.平行直线C.相交直线D.相交且垂直的直线

3.已知:

,

均为锐角,tan

112

,tan

53

,则(▲)

A.

6B.

4

C.

3

D.

12

4.在△??????中,已知??=6,??=8,??=60°,则△??????的面积为(

▲)

A.24B.12√3C.6√2D.12

5、若??,??∈(0,??),??????(??-????2)=-

1213

,??????(2-??)=4??+??

5,则??????2=(▲)

??.

3365

??.-3365

??.

6365

??.-

6365

6、已知????????的内角A、B、C所对的边分别是

a,b,c,若??????????+??????????=??,

则????????一定是(

A.等腰三角形. B.等边三角形. C.等腰直角三角形. D.直角三角形

7.若

tan

2,则2cos

2

sin2

(▲)

A.

354

B.

3

C.

76

D.

65

P

F

8、如图,已知四棱锥??-????????的底面是平行四边形

,点F在棱????上,)

????=??????,若????//平面??????,则??的值为(

A.1B.

32

C.3.2D

(第8题图)

二、多项选择题:本大题共

有多项符合题目要求9.下列各式中,值为

√32

4小题,每小题5分,共计20分.在每小题给出的选项中,

3分,有选错的得

0分.

.全部选对的得的是(▲

5分,部分选对的得

A.2??????15°??????15°

B.2(1-??????150)

0

1+??????15

C.1-2??????15

20

D.

3tan151tan15

2

10.根据下列条件解三角形,有两解的有(

A.已知??=√2,??=2,??=45°.

=√3,??=600C.已知??=3,??

B.已知??=2,??=√6,??=450

.已知??=2√3,??=4,??=450D

11.如图:在空间四边形

当????//平面

????????中,平面四边形EFGH的四个顶点分别是

上的点,边????,????,????,????

EFGH时,下面结论正确的是(

A.E,F,G,H一定是各边的中点

????=????:????????=????:????C.????:,且????:

B.??,??一定是????,????的中点

D.四边形EFGH是平行四边形或梯形

AEB

F

C

GH

D

(第11题图)

2√33

12.在△??????中,??=120°,????????+????????=+??=2??A.??

??=????????C.??????

,下列各式正确的是(▲)

B.??????(??+??)=-√3D.????????=√3????????

三、填空题:本题共4小题,每小题5分,共20分.

13.已知??为第二象限的角,????????=

45

,则??????2??=▲ .

14.如图所示,正方体1中,1的中点,ABCD-A1B1C1DE,F分别是棱BC,CC

则异面直线EF与B1D1所成的角为▲.

(第14题图)

15.已知

ABC的内角A,B,C的对边分别为a,b,c,

a

2

若ABC的面积为

16. 已知:-

c

2

b

2

4,cos(

, 则角B= ▲ .

5

12

12

12

)

35

,则cos(

4

)= ▲ .

四、解答题:本题共17.(本小题满分

6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

10分)

??,??,??,且满足√.3??????????=??????????

????????三个内角A,B,C对应的三条边长分别是(1)求角??的大小;

(2)若??=√.3,??=√11,求??

18.(本小题满分12分)

1

2(??)=??????已知函数.????+????????????????-2

(1)求函数??(??)的最小正周期;(2)若??∈[

??7??24

(??)的取值范围.,24],求函数??

19.(本小题满分12分)

如图,在三棱柱

ABC-A1B1C1中,E,求证:(1)????//平面??????

(2)EF∥平面AA1B1B

;20.(本小题满分12分)

已知

,(0,),且tan

2,cos

(1)求tan(??+??)的值;(2)求2

的值.

分别为A1C1和BC的中点,M,N分别为??1??和??1??

的中点(第19题图)

7210

F21.(本小题满分12分)

°

如图,在四边形????????中,????⊥????,∠??????=2. =60°,∠??????=120,????

(1)若∠??????;=300,求????

(2)记∠??????,当??为何值时,????????的面积有最小值?求出最小值=??

.

C

D

A

B

(第21题图)

22.(本小题满分12分)

“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大

2024-2024学年江苏省徐州市高一下学期期中考试数学试题(含答案) - 图文

绝密★启用前江苏省徐州市2024-2024学年度第二学期期中学情调研试题高一数学注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一、单项选择题:本大题共8小题,每小题5分,共计40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
推荐度:
点击下载文档文档为doc格式
8hpmn4sokj0fluh9boav3qhtz4wh2h00u0h
领取福利

微信扫码领取福利

微信扫码分享