对数函数及其性质 高中数学
1教学目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 2学情分析
刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 3重点难点
重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.
4教学过程 4.1 第一学时
教学活动
活动1【讲授】教学过程 (一)熟悉背景、引入课题 1.让学生看材料:
如图1材料(多媒体):某种细胞分裂时,由1个分裂成2个,2个分裂成4个 ……,
如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个
……,不难发现:分裂次数y就是要得到的细胞个数x的函数,即 ; 图 1
2.引导学生观察这个函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数 ,且
叫做对数函数,其中
是自变量,函数的定义域是(0,+∞).
注意:①对数函数的定义与指数函数类似,都是形式定义,注意辨别.如: ,
都不是对数函数.②对数函数对底数的限制: ,且 .
3.根据对数函数定义填空; 例1 (1)函数
y=logax2的定义域是___________ (其中a>0,a≠1) (2)
函数y=loga(4-x) 的定义域是___________ (其中a>0,a≠1)
说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止。
[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,选择从材料引出对数函
数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] (二)尝试画图、形成感知 1.确定探究问题
教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?
学生1:对数函数的图象和性质。
教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方法吗?
学生2:先画图象,再根据图象得出性质。
教师:画对数函数的图象是否象指数函数那样也需要分类? 学生3:按 和 分类讨论
教师:观察图象主要看哪几个特征?
学生4:从图象的形状、位置、升降、定点等角度去识图 教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:
步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象
(2)用描点法在同一坐标系中画出下列对数函数的图象
步骤二:观察对数函数 、 与 、
的图象特征,看看它们有那些异同点。 步骤三:利用计算器或计算机,选取底数 ,且
的若干个不同的值,在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征? 步骤四:规纳出能体现对数函数的代表性图象。 步骤五:作指数函数与对数函数图象的比较。 2.学生探究成果 (1)如图
4—2、4—3较为熟练地用描点法画出下列对数函数 , , , 的图象 图2 图3
(2)如图4—5学生选取底数
=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上